Vai al contenuto principale della pagina

Machine Learning in Single-Cell RNA-seq Data Analysis / / by Khalid Raza



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Raza Khalid Visualizza persona
Titolo: Machine Learning in Single-Cell RNA-seq Data Analysis / / by Khalid Raza Visualizza cluster
Pubblicazione: Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Edizione: 1st ed. 2024.
Descrizione fisica: 1 online resource (xviii, 88 pages) : illustrations
Disciplina: 006.31
Soggetto topico: Artificial intelligence
Machine learning
Quantitative research
Artificial Intelligence
Machine Learning
Data Analysis and Big Data
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Chapter 1. Introduction to Single-Cell RNA-seq Data Analysis -- Chapter 2. Preprocessing and Quality Control -- Chapter 3. Dimensionality Reduction and Clustering -- Chapter 4. Differential Expression Analysis -- Chapter 5. Trajectory Inference and Cell Fate Prediction -- Chapter 6. Emerging Topics and Future Directions.
Sommario/riassunto: This book provides a concise guide tailored for researchers, bioinformaticians, and enthusiasts eager to unravel the mysteries hidden within single-cell RNA sequencing (scRNA-seq) data using cutting-edge machine learning techniques. The advent of scRNA-seq technology has revolutionized our understanding of cellular diversity and function, offering unprecedented insights into the intricate tapestry of gene expression at the single-cell level. However, the deluge of data generated by these experiments presents a formidable challenge, demanding advanced analytical tools, methodologies, and skills for meaningful interpretation. This book bridges the gap between traditional bioinformatics and the evolving landscape of machine learning. Authored by seasoned experts at the intersection of genomics and artificial intelligence, this book serves as a roadmap for leveraging machine learning algorithms to extract meaningful patterns and uncover hidden biological insights within scRNA-seq datasets. .
Titolo autorizzato: Machine Learning in Single-Cell RNA-seq Data Analysis  Visualizza cluster
ISBN: 9789819767038
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910886083403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Computational Intelligence, . 2625-3712