Vai al contenuto principale della pagina

Machine Learning and Knowledge Discovery in Databases : European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part II / / edited by Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, João Gama, Alípio Jorge, Carlos Soares



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Machine Learning and Knowledge Discovery in Databases : European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part II / / edited by Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, João Gama, Alípio Jorge, Carlos Soares Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Edizione: 1st ed. 2015.
Descrizione fisica: 1 online resource (XLII, 773 p. 198 illus.)
Disciplina: 006.312
Soggetto topico: Data mining
Artificial intelligence
Pattern recognition
Information storage and retrieval
Database management
Application software
Data Mining and Knowledge Discovery
Artificial Intelligence
Pattern Recognition
Information Storage and Retrieval
Database Management
Information Systems Applications (incl. Internet)
Persona (resp. second.): AppiceAnnalisa
RodriguesPedro Pereira
Santos CostaVítor
GamaJoão
JorgeAlípio
SoaresCarlos
Note generali: Bibliographic Level Mode of Issuance: Monograph
Sommario/riassunto: The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. The 131 papers presented in these proceedings were carefully reviewed and selected from a total of 483 submissions. These include 89 research papers, 11 industrial papers, 14 nectar papers, 17 demo papers. They were organized in topical sections named: classification, regression and supervised learning; clustering and unsupervised learning; data preprocessing; data streams and online learning; deep learning; distance and metric learning; large scale learning and big data; matrix and tensor analysis; pattern and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.
Titolo autorizzato: Machine Learning and Knowledge Discovery in Databases  Visualizza cluster
ISBN: 3-319-23525-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910484000703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Artificial Intelligence ; ; 9285