Vai al contenuto principale della pagina

Machine Learning Approaches in Cyber Security Analytics [[electronic resource] /] / by Tony Thomas, Athira P. Vijayaraghavan, Sabu Emmanuel



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Thomas Tony Visualizza persona
Titolo: Machine Learning Approaches in Cyber Security Analytics [[electronic resource] /] / by Tony Thomas, Athira P. Vijayaraghavan, Sabu Emmanuel Visualizza cluster
Pubblicazione: Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (217 pages)
Disciplina: 005.8
Soggetto topico: Computer security
Application software
Data encryption (Computer science)
Computer crimes
Data structures (Computer science)
Systems and Data Security
Information Systems Applications (incl. Internet)
Cryptology
Cybercrime
Data Structures
Persona (resp. second.): P. VijayaraghavanAthira
EmmanuelSabu
Nota di contenuto: Chapter 1. Introduction -- Chapter 2. Machine Learning Algorithms -- Chapter 3. Machine Learning in Cyber Security Analytics -- Chapter 4. Applications of Support Vector Machines -- Chapter 5. Applications of Nearest Neighbor -- Chapter 6. Applications of Clustering -- Chapter 7. Applications of Dimensionality Reduction -- Chapter 8. Applications of other Machine Learning Methods.
Sommario/riassunto: This book introduces various machine learning methods for cyber security analytics. With an overwhelming amount of data being generated and transferred over various networks, monitoring everything that is exchanged and identifying potential cyber threats and attacks poses a serious challenge for cyber experts. Further, as cyber attacks become more frequent and sophisticated, there is a requirement for machines to predict, detect, and identify them more rapidly. Machine learning offers various tools and techniques to automate and quickly predict, detect, and identify cyber attacks. .
Titolo autorizzato: Machine Learning Approaches in Cyber Security Analytics  Visualizza cluster
ISBN: 981-15-1706-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996465446203316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui