Vai al contenuto principale della pagina
| Autore: |
Sename Olivier
|
| Titolo: |
Linear Parameter-Varying Control : Theory and Application to Automotive Systems
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (352 pages) |
| Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- About the Author -- Preface -- Acronyms -- About the Companion Website -- Introduction -- Part I Some Theoretical Aspects on LPV Systems: From Modeling to Control -- Chapter 1 Some Modeling Approaches for LPV and qLPV Systems -- 1.1 Introduction -- 1.2 Dynamical Systems -- 1.2.1 Nonlinear Dynamical Systems -- 1.2.2 Linear Time‐Invariant (LTI) Dynamical Systems -- 1.3 An Introduction to LPV Models -- 1.3.1 Definition -- 1.3.2 About the Time‐Varying Parameters -- 1.3.3 Is an LPV System Linear or Nonlinear? -- 1.3.4 Discrete‐Time LPV Systems -- 1.4 Specific Classes of LPV Systems -- 1.4.1 Class 1: Affine Parameter Dependence -- 1.4.2 Class 2: Polytopic Representations -- 1.4.3 Class 3: Polynomial Parameter Dependence -- 1.4.4 Class 4: Rational Parameter Dependence -- 1.4.5 Class 5: LFT Representations -- 1.4.6 Class 6: Takagi-Sugeno (TS) Representations -- 1.5 From a Nonlinear Model to an LPV Representation -- 1.5.1 Jacobian Linearization‐Based Method -- 1.5.2 Linear Differential Inclusion‐Based Method -- 1.5.3 Other Modeling Approaches -- 1.6 An Introduction to Identification of LPV Systems -- 1.7 The Nonuniqueness Issue: A Control‐Oriented LPV Modeling Perspective -- 1.8 Illustrative Example 1: A Single Tank System -- 1.8.1 A Jacobian Linearization‐Based Model -- 1.8.2 An LDI‐Based Model -- 1.8.3 A Polytopic Model -- 1.8.4 LFT Models -- 1.8.4.1 LFT from the Jacobian‐Linearized Model -- 1.8.4.2 LFT from the Nonlinear Model -- 1.9 Illustrative Example 2: qLPV Modeling and Time‐Varying Characteristics -- 1.9.1 A Polytopic Model -- 1.9.2 An LFT Model -- 1.9.3 Analysis -- 1.9.4 Considerations for the Simulation and Implementation of Polytopic Models -- 1.10 Conclusion -- Bibliography -- Chapter 2 Properties of LPV Systems -- 2.1 Introduction -- 2.2 Controllability -- 2.2.1 Definition. |
| 2.2.2 A First Analysis Following Odd Characterizations -- 2.2.3 The Correct Time‐Varying Characterization -- 2.3 Observability -- 2.3.1 Definition -- 2.3.2 Characterizations -- 2.4 Comments on State‐Space Realizations of LPV Systems -- 2.5 Stability -- 2.5.1 A Few Background -- 2.5.1.1 Stability of Nonlinear Systems -- 2.5.1.2 Stability of LTI Systems -- 2.5.2 Problem Statement and Facts -- 2.5.3 Quadratic Stability of LTI Uncertain Systems -- 2.5.4 Quadratic Stability of LPV Systems -- 2.5.5 Robust Stability or Parameter‐Dependent Lyapunov Stability -- 2.6 Performance Criteria: ℋ∞, g ℋ2, and Pole Placement -- 2.6.1 LTI Continuous‐Time Systems -- 2.6.1.1 ℋ∞ Performance -- 2.6.1.2 Generalized ℋ2 Performance -- 2.6.1.3 Pole Placement -- 2.6.2 LPV Continuous‐Time Systems -- 2.6.2.1 ℒ2 Stability (ℋ∞ Performance) of LPV Systems -- 2.6.2.2 Generalized ℋ2 Performance of LPV Systems -- 2.7 About Stabilizability and Detectability -- 2.7.1 Quadratic Stabilizability and Detectability -- 2.7.2 Parameter‐Dependent Stabilizability and Detectability -- 2.8 The Case of Discrete‐Time LPV Systems -- 2.8.1 Stability of Discrete‐Time LPV Systems -- 2.8.1.1 Quadratic Stability -- 2.8.1.2 Parameter‐Dependent Stability -- 2.8.2 ℋ∞ Performance Criteria for Discrete‐Time LPV Systems -- 2.9 Conclusion -- Bibliography -- Chapter 3 Control of LPV Systems -- 3.1 Introduction -- 3.2 LPV State‐Feedback Control -- 3.2.1 Some Facts and Preliminary Results -- 3.2.1.1 Case 1: Robust State‐Feedback Control -- 3.2.1.2 Case 2: LPV State‐Feedback Control with Fixed Performances -- 3.2.1.3 Case 3: LPV State‐Feedback Control with Varying (Adaptive) Performances -- 3.2.2 Static State‐Feedback Control: A Polytopic Approach -- 3.2.3 Static State‐Feedback Control: A Grid‐Based Approach -- 3.3 The LPV Dynamic Output Feedback Control -- 3.3.1 ℋ∞/LPV Control Problems. | |
| 3.3.2 LPV Dynamic Output Feedback Control - A Polytopic Approach -- 3.3.2.1 Requirements and Definitions -- 3.3.2.2 Solution of the ℋ∞/LPV Polytopic Control Problems -- 3.3.2.3 About the Conservatism of the Polytopic Approach -- 3.3.2.4 Computation and Implementation of the Polytopic Controller -- 3.3.3 LPV Dynamic Output Feedback Control - A Grid‐Based Approach -- 3.3.3.1 The LPV Grid‐Based Design Solution -- 3.3.3.2 Comments on the Grid‐Based Approach -- 3.4 LPV Observer Design -- 3.4.1 Introduction and Problem Statement -- 3.4.2 LPV Polytopic Observer with H∞ Performance Method -- 3.4.3 LPV Polytopic Observer with Pole Placement Method -- 3.4.4 Concluding Remarks -- 3.5 About Control of Discrete‐Time LPV Systems -- 3.6 Conclusion -- Bibliography -- Part II LPV Methods for Nonlinear Systems -- Chapter 4 Control and Observer Design for Nonlinear Systems Using Quasi‐LPV Models: An Illustration Through Examples -- 4.1 Introduction -- 4.2 ℋ∞/LPV Control of a Nonlinear System -- 4.2.1 qLPV and Polytopic Models -- 4.2.2 ℋ∞ LTI/LPV Control: Problem Formulation -- 4.2.3 Performance Specification Using Weighting Functions -- 4.2.4 Problem Solution and Analysis -- 4.2.5 Polytopic Controller and Scheduling Parameters -- 4.2.6 Simulation Results -- 4.3 An ℋ∞/LPV Observer of a Three‐Tank Nonlinear System -- 4.3.1 Physical Model -- 4.3.2 LPV Modeling and qLPV State Space Model -- 4.3.3 LPV Observer Design: Problem Formulation -- 4.3.4 LPV Observer Design: Problem Solution -- 4.3.5 Simulation Results -- 4.4 Conclusion -- Bibliography -- Chapter 5 Observer Design for Semi‐active Suspension Systems: qLPV Approaches -- 5.1 Introduction -- 5.2 Illustrative Case Study: The INOVE Testbench, a Semi‐active Suspension System -- 5.3 Electro‐Rheological Dampers: Modeling Approaches -- 5.3.1 Static Models of Semi‐active Dampers -- 5.3.2 Dynamical Model of Semi‐active Dampers. | |
| 5.3.3 Observer‐Design Oriented ER Damper Models -- 5.4 qLPV Quarter Car Semi‐active Suspension Models -- 5.4.1 qLPV Model: Method 1 -- 5.4.2 qLPV Model: Method 2 -- 5.4.3 qLPV Model: Method 3 -- 5.5 Method 1: An ℋ∞/gℋ2 Observer for Suspension State Estimation -- 5.5.1 Problem Formulation -- 5.5.2 ℋ∞ /gℋ2 LPV Observer Polytopic Design Method -- 5.5.3 Problem Solution and Simulation Results -- 5.6 Method 2: A ℋ∞ Filtering Approach for Damper Force Estimation -- 5.6.1 Problem Formulation -- 5.6.2 ℋ∞ Filter Design: A Polytopic Approach -- 5.6.3 Problem Solution and Simulation Results -- 5.7 Method 3: A Nonlinear Parameter Varying Approach for State Estimation -- 5.7.1 NLPV Observer Definition -- 5.7.2 Problem Formulation -- 5.7.3 NLPV Observer Polytopic Design -- 5.7.4 NLPV Observer Grid‐Based Design -- 5.7.5 Problem Solution and Simulation Results -- 5.8 Concluding Remarks -- Bibliography -- Chapter 6 Lateral Control of Autonomous Vehicle -- 6.1 Introduction -- 6.2 Modeling -- 6.2.1 Dynamical Bicycle Models -- 6.2.1.1 Grid‐Based Bicycle Model -- 6.2.1.2 Polytopic Bicycle Model -- 6.2.2 Augmented Model with Actuator Dynamics -- 6.3 ℋ∞/LPV Control Design -- 6.3.1 Problem Formulation -- 6.3.2 Performance Specifications Using Weighting Functions -- 6.3.3 Polytopic Approach -- 6.3.4 Grid‐Based Approach -- 6.4 Analysis of the Polytopic and Grid‐Based Design Methods -- 6.5 Simulation Results -- 6.6 Conclusion -- Bibliography -- Part III LPV Adaptive‐Like Control Methods -- Chapter 7 Methods and Tools for LPV Adaptive‐Like Control -- 7.1 Introduction -- 7.2 The ℋ∞ Framework: A Generic Tool for "Adaptive‐Like" Control -- 7.3 LPV Adaptive Control with Varying Closed‐Loop Performances (Function of External Parameters) -- 7.3.1 ℋ∞/LPV Control Problem Formulation -- 7.3.2 Performance Specification Using Weighting Functions -- 7.3.3 Problem Solution and Analysis. | |
| 7.3.4 Polytopic Controller and Scheduling Strategy -- 7.3.5 Simulation Results -- 7.4 LPV Adaptive Control Function of Varying Endogeneous Parameters -- 7.4.1 A Polytopic Model -- 7.4.2 ℋ∞/LPV Control Problem Formulation -- 7.4.3 Performance Specification Using Weighting Functions -- 7.4.4 Problem Solution and Analysis -- 7.4.5 Polytopic Controller and Scheduling Strategy -- 7.4.6 Simulation Results -- 7.5 Concluding Remarks -- Bibliography -- Chapter 8 LPV Road Adaptive Suspension Control -- 8.1 Introduction -- 8.2 The Semi‐active Suspension Quarter‐Car Model -- 8.2.1 Control Design Damper Model -- 8.2.2 Simulation Damper Model -- 8.3 Road Roughness Estimator -- 8.4 Synthesis of a Semi‐active Suspension Control -- 8.4.1 qLPV Quarter‐Car Model -- 8.4.2 ℋ∞/LPV Road Adaptive Control: Problem Formulation -- 8.4.3 Performance Specification Using Weighting Functions -- 8.4.4 LPV/ℋ∞ Control Synthesis and Solution -- 8.4.4.1 Polytopic Approach -- 8.4.4.2 Grid‐Based Approach -- 8.4.5 Scheduling Strategy in View of Road Adaptive Performances -- 8.5 Simulation Results -- 8.6 Conclusions -- Bibliography -- Chapter 9 LPV Fault‐Tolerant Control Strategies for Suspension Systems -- 9.1 Introduction -- 9.2 Related Works -- 9.2.1 About Fault Estimation -- 9.2.2 About FTC -- 9.2.3 About Vehicle Applications -- 9.3 Fault Diagnosis Problem Formulation for Semi‐active ER Suspension Systems -- 9.3.1 Approach 1: Static Bingham Damper Model with Multiplicative Fault -- 9.3.2 Approach 2: Dynamical Guo Damper Model with Additive Fault -- 9.4 Fault Estimation Using LPV PI Observers -- 9.4.1 Approach 1: An LPV Observer Design Method for Multiplicative Damper Fault Estimation -- 9.4.2 Approach 2: An NLPV Observer Design Method for Additive Damper Fault Estimation -- 9.5 FTC LPV Control of Semi‐active Suspension Systems -- 9.5.1 Quarter‐Car Model. | |
| 9.5.2 Reconfigurable Semi‐active Suspension Control: Problem Formulation. | |
| Titolo autorizzato: | Linear Parameter-Varying Control ![]() |
| ISBN: | 9781394285983 |
| 1394285981 | |
| 9781394285976 | |
| 1394285973 | |
| 9781394285969 | |
| 1394285965 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910993903503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |