Vai al contenuto principale della pagina

Linear Algebra and Optimization for Machine Learning : A Textbook / / by Charu C. Aggarwal



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Aggarwal Charu C Visualizza persona
Titolo: Linear Algebra and Optimization for Machine Learning : A Textbook / / by Charu C. Aggarwal Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (507 pages) : illustrations
Disciplina: 512.5
Soggetto topico: Machine learning
Matrix theory
Algebra
Computers
Machine Learning
Linear and Multilinear Algebras, Matrix Theory
Information Systems and Communication Service
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Preface -- 1 Linear Algebra and Optimization: An Introduction -- 2 Linear Transformations and Linear Systems -- 3 Eigenvectors and Diagonalizable Matrices -- 4 Optimization Basics: A Machine Learning View -- 5 Advanced Optimization Solutions -- 6 Constrained Optimization and Duality -- 7 Singular Value Decomposition -- 8 Matrix Factorization -- 9 The Linear Algebra of Similarity -- 10 The Linear Algebra of Graphs -- 11 Optimization in Computational Graphs -- Index.
Sommario/riassunto: This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
Titolo autorizzato: Linear Algebra and Optimization for Machine Learning  Visualizza cluster
ISBN: 3-030-40344-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910410040003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui