Vai al contenuto principale della pagina
Autore: | Iwasawa Kinkichi |
Titolo: | Lectures on P-Adic L-Functions. (AM-74), Volume 74 / / Kinkichi Iwasawa |
Pubblicazione: | Princeton, NJ : , : Princeton University Press, , [2016] |
©1972 | |
Descrizione fisica: | 1 online resource (116 pages) |
Disciplina: | 512/.74 |
Soggetto topico: | L-functions |
Algebraic number theory | |
Soggetto non controllato: | Abelian extension |
Absolute value | |
Algebraic closure | |
Algebraic number field | |
Algebraic number theory | |
Algebraic number | |
Algebraically closed field | |
Arithmetic function | |
Class field theory | |
Complex number | |
Conjecture | |
Cyclotomic field | |
Dirichlet character | |
Existential quantification | |
Finite group | |
Integer | |
L-function | |
Mellin transform | |
Meromorphic function | |
Multiplicative group | |
P-adic L-function | |
P-adic number | |
Power series | |
Prime number | |
Quadratic field | |
Rational number | |
Real number | |
Root of unity | |
Scientific notation | |
Series (mathematics) | |
Special case | |
Subgroup | |
Theorem | |
Topology | |
Classificazione: | SI 830 |
Persona (resp. second.): | IwasawaKenkichi |
Note generali: | Bibliographic Level Mode of Issuance: Monograph |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | Frontmatter -- PREFACE / Iwasawa, Kenkichi -- CONTENTS -- §1. DIRICHLET'S L-FUNCTIONS -- §2. GENERALIZED BERNOULLI NUMBERS -- §3. p-ADIC L-FUNCTIONS -- §4. p-ADIC LOGARITHMS AND p-ADIC REGULATORS -- §5. CALCULATION OF Lp (1; χ) -- §6. AN ALTERNATE METHOD -- §7. SOME APPLICATIONS -- APPENDIX -- BIBLIOGRAPHY |
Sommario/riassunto: | An especially timely work, the book is an introduction to the theory of p-adic L-functions originated by Kubota and Leopoldt in 1964 as p-adic analogues of the classical L-functions of Dirichlet.Professor Iwasawa reviews the classical results on Dirichlet's L-functions and sketches a proof for some of them. Next he defines generalized Bernoulli numbers and discusses some of their fundamental properties. Continuing, he defines p-adic L-functions, proves their existence and uniqueness, and treats p-adic logarithms and p-adic regulators. He proves a formula of Leopoldt for the values of p-adic L-functions at s=1. The formula was announced in 1964, but a proof has never before been published. Finally, he discusses some applications, especially the strong relationship with cyclotomic fields. |
Titolo autorizzato: | Lectures on P-Adic L-Functions. (AM-74), Volume 74 |
ISBN: | 1-4008-8170-6 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910154753503321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |