Vai al contenuto principale della pagina

Large-scale graph processing using Apache Giraph / / by Sherif Sakr, Faisal Moeen Orakzai, Ibrahim Abdelaziz, Zuhair Khayyat



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Sakr Sherif Visualizza persona
Titolo: Large-scale graph processing using Apache Giraph / / by Sherif Sakr, Faisal Moeen Orakzai, Ibrahim Abdelaziz, Zuhair Khayyat Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Edizione: 1st ed. 2016.
Descrizione fisica: 1 online resource (XXV, 197 p. 102 illus., 87 illus. in color.)
Disciplina: 005.74
Soggetto topico: Database management
Big data
Data structures (Computer science)
Database Management
Big Data/Analytics
Data Structures
Persona (resp. second.): OrakzaiFaisal Moeen
AbdelazizIbrahim
KhayyatZuhair
Nota di contenuto: 1. Introduction -- 2. Getting started with Giraph -- 3. Giraph-In-Action: Implementing Popular Graph Algorithms using Giraph -- 4. Giraph Programming Optimizations: Tips and Tricks -- 5. Similar Systems to Giraph -- 6. Conclusions.
Sommario/riassunto: This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms. The book is organized as follows: Chapter 1 starts by providing a general background of the big data phenomenon and a general introduction to the Apache Giraph system, its abstraction, programming model and design architecture. Next, chapter 2 focuses on Giraph as a platform and how to use it. Based on a sample job, even more advanced topics like monitoring the Giraph application lifecycle and different methods for monitoring Giraph jobs are explained.  Chapter 3 then provides an introduction to Giraph programming, introduces the basic Giraph graph model and explains how to write Giraph programs. In turn, Chapter 4 discusses in detail the implementation of some popular graph algorithms including PageRank, connected components, shortest paths and triangle closing. Chapter 5 focuses on advanced Giraph programming, discussing common Giraph algorithmic optimizations, tunable Giraph configurations that determine the system’s utilization of the underlying resources, and how to write a custom graph input and output format. Lastly, chapter 6 highlights two systems that have been introduced to tackle the challenge of large scale graph processing, GraphX and GraphLab, and explains the main commonalities and differences between these systems and Apache Giraph. This book serves as an essential reference guide for students, researchers and practitioners in the domain of large scale graph processing. It offers step-by-step guidance, with several code examples and the complete source code available in the related github repository. Students will find a comprehensive introduction to and hands-on practice with tackling large scale graph processing problems using the Apache Giraph system, while researchers will discover thorough coverage of the emerging and ongoing advancements in big graph processing systems.
Titolo autorizzato: Large-Scale Graph Processing Using Apache Giraph  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910158734703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui