Vai al contenuto principale della pagina
| Autore: |
Schochetman Irwin E. <1939->
|
| Titolo: |
Kernels and integral operators for continuous sums of Banach spaces / / Irwin E. Schochetman
|
| Pubblicazione: | Providence : , : American Mathematical Society, , [1978] |
| ©1978 | |
| Descrizione fisica: | 1 online resource (129 p.) |
| Disciplina: | 515/.73 |
| Soggetto topico: | Banach spaces |
| Integral operators | |
| Kernel functions | |
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Bibliography: pages 120. |
| Nota di contenuto: | ""CONTENTS""; ""CHAPTER 0. INTRODUCTION, BACKGROUND, AND PRELIMINARIES""; ""CHAPTER I. CONTINUOUS AND MEASURABLE VECTOR FIELDS""; ""1. Continuity structures and continuity""; ""2. Equicontinuity""; ""3. Measurability""; ""4. Product spaces""; ""CHAPTER II. CONTINUOUS SUMS OF BANACH SPACES""; ""5. Spaces of continuous vector fields""; ""6. Lebesgue spaces""; ""7. Mixed-norm Lebesgue spaces""; ""8. Dual continuity structures""; ""CHAPTER III. KERNEL FIELDS""; ""9. Norm formulas""; ""10. Strong continuity and measurability""; ""11. Weak continuity and measurability"" |
| ""12. Uniform continuity and measurability""""13. Finite-rank kernels""; ""14. Hilbert-Schmidt kernels""; ""CHAPTER IV. INTEGRAL OPERATORS AND COMPACTNESS""; ""15. Integral operators""; ""16. Compact operators""; ""17. Hilbert-Schmidt operators""; ""18. Trace-class operators""; ""CHAPTER V. APPLICATION TO INDUCED BANACH REPRESENTATIONS""; ""19. Induced Banach representations""; ""20. The integrated form""; ""21. Compactness for induced representations""; ""REFERENCES"" | |
| Altri titoli varianti: | Continuous sums of Banach spaces |
| Titolo autorizzato: | Kernels and integral operators for continuous sums of Banach spaces ![]() |
| ISBN: | 1-4704-0257-2 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910829186803321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |