Vai al contenuto principale della pagina

Kernel smoothing in MATLAB : theory and practice of kernel smoothing / / Ivanka Horova, Jan Kolacek, Jiri Zelinka



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Horova Ivanka Visualizza persona
Titolo: Kernel smoothing in MATLAB : theory and practice of kernel smoothing / / Ivanka Horova, Jan Kolacek, Jiri Zelinka Visualizza cluster
Pubblicazione: Singapore ; ; Hackensack, NJ, : World Scientific, 2012
Edizione: 1st ed.
Descrizione fisica: 1 online resource (242 p.)
Disciplina: 519.5
Soggetto topico: Smoothing (Statistics)
Kernel functions
Altri autori: KolacekJan  
ZelinkaJiri  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. 213-223) and index.
Nota di contenuto: Preface; Contents; 1. Introduction; 1.1 Kernels and their properties; 1.2 Use of MATLAB toolbox; 1.3 Complements; 2. Univariate kernel density estimation; 2.1 Basic definition; 2.2 Statistical properties of the estimate; 2.3 Choosing the shape of the kernel; 2.4 Choosing the bandwidth; 2.4.1 Reference rule; 2.4.2 Maximal smoothing principle; 2.4.3 Cross-validation methods; 2.4.4 Plug-in method; 2.4.5 Iterative method; 2.5 Density derivative estimation; 2.5.1 Choosing the bandwidth; 2.6 Automatic procedure for simultaneous choice of the kernel, the bandwidth and the kernel order
2.7 Boundary effects2.7.1 Generalized reflection method; 2.8 Simulations; 2.9 Application to real data; 2.9.1 Buffalo snowfall data; 2.9.2 Concentration of cholesterol; 2.10 Use of MATLAB toolbox; 2.10.1 Running the program; 2.10.2 Main figure; 2.10.3 Setting the parameters; 2.10.4 Eye-control method; 2.10.5 The final estimation; 2.11 Complements; 3. Kernel estimation of a distribution function; 3.1 Basic definition; 3.2 Statistical properties of the estimate; 3.3 Choosing the bandwidth; 3.3.1 Cross-validation methods; 3.3.2 Maximal smoothing principle; 3.3.3 Plug-in methods
3.3.4 Iterative method3.4 Boundary effects; 3.4.1 Generalized reflection method; 3.5 Application to data; 3.6 Simulations; 3.7 Application to real data; 3.7.1 Trout PCB data; 3.8 Use of MATLAB toolbox; 3.8.1 Running the program; 3.8.2 Main figure; 3.8.3 Setting the parameters; 3.8.4 Eye-control method; 3.8.5 The final estimation; 3.9 Complements; 4. Kernel estimation and reliability assessment; 4.1 Basic Definition; 4.2 Estimation of ROC curves; 4.2.1 Binormal model; 4.2.2 Nonparametric estimates; 4.3 Summary indices based on the ROC curve; 4.3.1 Area under the ROC curve
4.3.2 Maximum improvement of sensitivity over chance diagonal (MIS)4.4 Other indices of reliability assessment; 4.4.1 Cumulative Lift; 4.4.2 Lift Ratio; 4.4.3 Integrated Relative Lift; 4.4.4 Information Value; 4.4.5 KR index; 4.5 Application to real data; 4.5.1 Head trauma data; 4.5.2 Pancreatic cancer data; 4.5.3 Consumer loans data; 4.6 Use of MATLAB toolbox; 4.6.1 Running the program; 4.6.2 Start menu; 4.6.3 Simulation menu; 4.6.4 The final estimation; 5. Kernel estimation of a hazard function; 5.1 Basic definition; 5.2 Statistical properties of the estimate; 5.3 Choosing the bandwidth
5.3.1 Cross-validation method5.3.2 Maximum likelihood method; 5.3.3 Iterative method; 5.3.4 Acceptable bandwidths; 5.3.5 Points of the most rapid change; 5.4 Description of algorithm; 5.5 Application to real data; 5.5.1 Breast carcinoma data; 5.5.2 Cervix carcinoma data; 5.5.3 Chronic lymphocytic leukaemia; 5.5.4 Bone marrow transplant; 5.6 Use of MATLAB toolbox; 5.6.1 Running the program; 5.6.2 Main figure; 5.6.3 Setting the parameters; 5.6.4 Eye-control method; 5.6.5 The final estimation; 5.7 Complements; Simulation of lifetimes; Simulation of censoring times
6. Kernel estimation of a regression function
Sommario/riassunto: Methods of kernel estimates represent one of the most effective nonparametric smoothing techniques. These methods are simple to understand and they possess very good statistical properties. This book provides a concise and comprehensive overview of statistical theory and in addition, emphasis is given to the implementation of presented methods in Matlab. All created programs are included in a special toolbox which is an integral part of the book. This toolbox contains many Matlab scripts useful for kernel smoothing of density, cumulative distribution function, regression function, hazard funct
Titolo autorizzato: Kernel smoothing in MATLAB  Visualizza cluster
ISBN: 1-283-63596-8
981-4405-49-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910807062103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui