Vai al contenuto principale della pagina

Hybrid Imaging and Visualization : Employing Machine Learning with Mathematica - Python / / by Joseph Awange, Béla Paláncz, Lajos Völgyesi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Awange Joseph L. <1969-> Visualizza persona
Titolo: Hybrid Imaging and Visualization : Employing Machine Learning with Mathematica - Python / / by Joseph Awange, Béla Paláncz, Lajos Völgyesi Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Edizione: 2nd ed. 2025.
Descrizione fisica: 1 online resource (471 pages)
Disciplina: 006.37
Soggetto topico: Geographic information systems
Image processing - Digital techniques
Computer vision
Geophysics
Solar system
Geographical Information System
Computer Imaging, Vision, Pattern Recognition and Graphics
Space Physics
Persona (resp. second.): PalánczBéla <1944->
VölgyesiLajos
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Chapter 1. Dimension Reduction -- Chapter 2. Classification -- Chapter 3. Clustering -- Chapter 4. Regression -- Chapter 5. Neural Networks -- Chapter 6. Optimizing Hyperparameters -- Chapter 7. ChatGPT.
Sommario/riassunto: This second edition of the book that targets those in computer algebra and artificial intelligence introduces Black Hole algorithm that is essential for optimizing hyperparameters, an important task in machine learning where mostly, stochastic global methods are used as well as ChatGPT, a novel and in the last few years, very popular Generative AI technology. In addition, fisher discriminant, a linear discriminant that can provide an optimal separation of objects, and the conversion of time series into images thereby making it possible to employ convolution neural network to classify time series effectively are presented.
Titolo autorizzato: Hybrid Imaging and Visualization  Visualizza cluster
ISBN: 3-031-72817-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911001467503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui