Vai al contenuto principale della pagina
| Autore: |
Melenk Jens M. <1967->
|
| Titolo: |
Hp-finite element methods for singular perturbations / / Jens M. Melenk
|
| Pubblicazione: | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2002 |
| Descrizione fisica: | 1 online resource (xiv, 326 pages) |
| Disciplina: | 515.353 |
| Soggetto topico: | Differential equations, Partial - Numerical solutions |
| Singular perturbations (Mathematics) | |
| Classificazione: | 65N30 |
| 35B25 | |
| Nota di bibliografia: | Includes bibliographical references (pages [311]-316) and index. |
| Nota di contenuto: | 1.Introduction -- Part I: Finite Element Approximation -- 2. hp-FEM for Reaction Diffusion Problems: Principal Results -- 3. hp Approximation -- Part II: Regularity in Countably Normed Spaces -- 4. The Countably Normed Spaces blb,e -- 5. Regularity Theory in Countably Normed Spaces -- Part III: Regularity in Terms of Asymptotic Expansions -- 6. Exponentially Weighted Countably Normed Spaces -- Appendix -- References -- Index. |
| Sommario/riassunto: | Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously. |
| Titolo autorizzato: | Hp-finite element methods for singular perturbations ![]() |
| ISBN: | 3-540-45781-X |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996466619003316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |