Vai al contenuto principale della pagina
Autore: | Kramer Linus <1964-> |
Titolo: | Homogeneous spaces, Tits buildings, and isoparametric hypersurfaces / / Linus Kramer |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2002] |
©2002 | |
Descrizione fisica: | 1 online resource (137 p.) |
Disciplina: | 510 s |
512/.2 | |
Soggetto topico: | Buildings (Group theory) |
Global differential geometry | |
Finite generalized quadrangles | |
Homogeneous spaces | |
Note generali: | "Volume 158, number 752 (third of 4 numbers)." |
Nota di bibliografia: | Includes bibliographical references (pages 110-114). |
Nota di contenuto: | ""Contents""; ""Introduction""; ""Chapter 1. The Leray-Serre spectral sequence""; ""1.A. Additive structure""; ""1.B. Multiplicative structure""; ""1.C. Notes on collapsing""; ""Chapter 2. Ranks of homotopy groups""; ""2.A. The Whitehead tower""; ""2.B. The Cartan-Serre Theorem""; ""Chapter 3. Some homogeneous spaces""; ""3.A. Structure of compact Lie groups""; ""3.B. Certain homogeneous spaces""; ""3.C. The integral classification""; ""Chapter 4. Representations of compact Lie groups""; ""4.A. The classification of irreducible representations""; ""4.B. Subgroups of classical groups"" |
""7.C. Some results about compact transformation groups""""7.D. Group actions on compact quadrangles""; ""7.E. The Stiefel manifolds""; ""7.F. The (4,4n � 5)-series""; ""7.G. Products of spheres""; ""7.H. Summary""; ""Chapter 8. Homogeneous focal manifolds""; ""8.A. Isoparametric hypersurfaces""; ""8.B. The Stiefel manifolds""; ""8.C. Some sporadic cases""; ""8.D. The semisimple case""; ""8.E. The (4,4n � 5)- and the (3, 4n � 4)-series""; ""8.F. Summary""; ""Bibliography"" | |
Titolo autorizzato: | Homogeneous spaces, Tits buildings, and isoparametric hypersurfaces |
ISBN: | 1-4704-0345-5 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910820406203321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |