Vai al contenuto principale della pagina

High-Utility Pattern Mining : Theory, Algorithms and Applications / / edited by Philippe Fournier-Viger, Jerry Chun-Wei Lin, Roger Nkambou, Bay Vo, Vincent S. Tseng



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: High-Utility Pattern Mining : Theory, Algorithms and Applications / / edited by Philippe Fournier-Viger, Jerry Chun-Wei Lin, Roger Nkambou, Bay Vo, Vincent S. Tseng Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Edizione: 1st ed. 2019.
Descrizione fisica: 1 online resource (343 pages)
Disciplina: 006.312
Soggetto topico: Computational intelligence
Artificial intelligence
Data mining
Computational Intelligence
Artificial Intelligence
Data Mining and Knowledge Discovery
Persona (resp. second.): Fournier-VigerPhilippe
LinJerry Chun-Wei
NkambouRoger
VoBay
TsengVincent S
Nota di contenuto: Introduction -- Problem Definition -- Algorithms -- Extensions of the Problem -- Research Opportunities -- Open-Source Implementations -- Conclusion.
Sommario/riassunto: This book presents an overview of techniques for discovering high-utility patterns (patterns with a high importance) in data. It introduces the main types of high-utility patterns, as well as the theory and core algorithms for high-utility pattern mining, and describes recent advances, applications, open-source software, and research opportunities. It also discusses several types of discrete data, including customer transaction data and sequential data. The book consists of twelve chapters, seven of which are surveys presenting the main subfields of high-utility pattern mining, including itemset mining, sequential pattern mining, big data pattern mining, metaheuristic-based approaches, privacy-preserving pattern mining, and pattern visualization. The remaining five chapters describe key techniques and applications, such as discovering concise representations and regular patterns. .
Titolo autorizzato: High-Utility Pattern Mining  Visualizza cluster
ISBN: 3-030-04921-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910739480503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Studies in Big Data, . 2197-6503 ; ; 51