Autore: |
Zagidullina, Aygul
|
Titolo: |
High-Dimensional Covariance Matrix Estimation : An Introduction to Random Matrix Theory / Aygul Zagidullina
|
Pubblicazione: |
Cham, : Springer, 2021 |
Descrizione fisica: |
xiv, 115 p. : ill. ; 24 cm |
Soggetto topico: |
60-XX - Probability theory and stochastic processes [MSC 2020] |
|
60B20 - Random matrices (probabilistic aspects) [MSC 2020] |
|
62-XX - Statistics [MSC 2020] |
|
62H12 - Estimation in multivariate analysis [MSC 2020] |
|
62J10 - Analysis of variance and covariance (ANOVA) [MSC 2020] |
|
62P20 - Applications of statistics to economics [MSC 2020] |
|
62R07 - Statistical aspects of big data and data science [MSC 2020] |
Soggetto non controllato: |
Big Data |
|
Covariance matrix estimation |
|
High-dimensional asymptotics |
|
High-dimensional covariance matrix estimation |
|
High-dimensional statistics |
|
Linear spectral statistics for high-dimensional inference |
|
Random matrix theory |
|
Sample covariance matrix estimator |
|
Shrinkage estimation of covariance matrices |
|
Statistical inference |
Titolo autorizzato: |
High-Dimensional Covariance Matrix Estimation  |
Formato: |
Materiale a stampa  |
Livello bibliografico |
Monografia |
Lingua di pubblicazione: |
Inglese |
Record Nr.: | VAN00274816 |
Lo trovi qui: | Univ. Vanvitelli |
Localizzazioni e accesso elettronico |
https://doi.org/10.1007/978-3-030-80065-9 |
Opac: |
Controlla la disponibilità qui |