Vai al contenuto principale della pagina

Green's Kernels and Meso-Scale Approximations in Perforated Domains / / by Vladimir Maz'ya, Alexander Movchan, Michael Nieves



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Maz'ya Vladimir Visualizza persona
Titolo: Green's Kernels and Meso-Scale Approximations in Perforated Domains / / by Vladimir Maz'ya, Alexander Movchan, Michael Nieves Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2013
Edizione: 1st ed. 2013.
Descrizione fisica: 1 online resource (XVII, 258 p. 17 illus., 10 illus. in color.)
Disciplina: 515.353
Soggetto topico: Partial differential equations
Approximation theory
Partial Differential Equations
Approximations and Expansions
Persona (resp. second.): MovchanAlexander
NievesMichael
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di contenuto: Part I: Green’s functions in singularly perturbed domains: Uniform asymptotic formulae for Green’s functions for the Laplacian in domains with small perforations -- Mixed and Neumann boundary conditions for domains with small holes and inclusions. Uniform asymptotics of Green’s kernels -- Green’s function for the Dirichlet boundary value problem in a domain with several inclusions -- Numerical simulations based on the asymptotic approximations -- Other examples of asymptotic approximations of Green’s functions in singularly perturbed domains -- Part II: Green’s tensors for vector elasticity in bodies with small defects: Green’s tensor for the Dirichlet boundary value problem in a domain with a single inclusion -- Green’s tensor in bodies with multiple rigid inclusions -- Green’s tensor for the mixed boundary value problem in a domain with a small hole -- Part III Meso-scale approximations. Asymptotic treatment of perforated domains without homogenization: Meso-scale approximations for solutions of Dirichlet problems -- Mixed boundary value problems in multiply-perforated domains.
Sommario/riassunto: There are a wide range of applications in physics and structural mechanics involving domains with singular perturbations of the boundary. Examples include perforated domains and bodies with defects of different types. The accurate direct numerical treatment of such problems remains a challenge. Asymptotic approximations offer an alternative, efficient solution. Green’s function is considered here as the main object of study rather than a tool for generating solutions of specific boundary value problems. The uniformity of the asymptotic approximations is the principal point of attention. We also show substantial links between Green’s functions and solutions of boundary value problems for meso-scale structures. Such systems involve a large number of small inclusions, so that a small parameter, the relative size of an inclusion, may compete with a large parameter, represented as an overall number of inclusions. The main focus of the present text is on two topics: (a) asymptotics of Green’s kernels in domains with singularly perturbed boundaries and (b) meso-scale asymptotic approximations of physical fields in non-periodic domains with many inclusions. The novel feature of these asymptotic approximations is their uniformity with respect to the independent variables. This book addresses the needs of mathematicians, physicists and engineers, as well as research students interested in asymptotic analysis and numerical computations for solutions to partial differential equations.
Titolo autorizzato: Green's Kernels and Meso-Scale Approximations in Perforated Domains  Visualizza cluster
ISBN: 3-319-00357-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910733732503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 2077