Vai al contenuto principale della pagina

Graphene Field-Effect Transistors : Advanced Bioelectronic Devices for Sensing Applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Azzaroni Omar Visualizza persona
Titolo: Graphene Field-Effect Transistors : Advanced Bioelectronic Devices for Sensing Applications Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2023
©2023
Edizione: 1st ed.
Descrizione fisica: 1 online resource (446 pages)
Disciplina: 621.3815284
Altri autori: KnollWolfgang  
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 2D Electronic Circuits for Sensing Applications -- 1.1 Introduction -- 1.2 Graphene Inductors -- 1.2.1 Modeling of Graphene Inductors -- 1.3 Graphene Capacitors -- 1.3.1 Modeling Graphene Capacitors -- 1.4 2D Material Transistors -- 1.4.1 Most Common Topologies for Transistors -- 1.4.2 Modeling of 2D Materials-Based Transistors -- 1.5 2D Material Diodes -- 1.5.1 Most Common Topologies -- 1.5.2 Modeling of 2D Materials-Based Diodes -- 1.6 Graphene Devices -- 1.6.1 Graphene Frequency Multipliers -- 1.6.2 Graphene Mixers -- 1.6.3 Graphene Oscillators -- 1.6.3.1 Ring Oscillators -- 1.6.3.2 LC Tank Oscillators -- 1.7 Conclusion -- References -- Chapter 2 Large Graphene Oxide for Sensing Applications -- 2.1 Graphene Oxide (GO) -- 2.2 GO as Biosensors -- 2.3 Large GO -- 2.4 Mechanism of Large GO via Modified Hummers Method -- 2.5 Large GO (Modified Hummers Method) Biosensors -- 2.6 Mechanism of Large GO via Reduced GO Growth -- 2.7 Large GO (Reduced GO Growth) Biosensors -- 2.8 Conclusion -- 2.9 Further Developments -- References -- Chapter 3 Solution-Gated Reduced Graphene Oxide FETs: Device Fabrication and Biosensors Applications -- 3.1 Introduction -- 3.2 Graphene, Graphene Oxide, and Reduced Graphene Oxide -- 3.2.1 Chemical Reduction -- 3.2.2 Thermal Reduction -- 3.2.3 Electrochemical Reduction -- 3.3 rGO-Based Solution-Gated FETs -- 3.3.1 Manufacturing Strategies -- 3.4 Applications of rGO SG-FETs as Biosensors -- 3.4.1 rGO Functionalization -- 3.4.2 Enzymatic Biosensors -- 3.4.3 Affinity Biosensors -- 3.4.4 Debye Length Screening and How to Overcome It -- 3.5 Final Remarks and Challenges -- Acknowledgments -- References -- Chapter 4 Graphene-Based Electronic Biosensors for Disease Diagnostics -- 4.1 Introduction -- 4.1.1 A Promise for Diagnostics.
4.1.2 Principle of Graphene FET Sensor -- 4.2 Device Fabrication Process -- 4.2.1 Graphene Synthesis -- 4.2.2 Graphene Transfer Over Substrates -- 4.2.3 Fabrication of GFET -- 4.2.4 New Developments -- 4.3 Functionalization and Passivation -- 4.3.1 Probe Molecules -- 4.3.2 Immobilization of Probe Molecules -- 4.3.3 Debye Length -- 4.3.4 Passivation -- 4.4 CVD GFETs for Diagnostics -- 4.4.1 Graphene-Based FET Biosensors for Nucleic Acids -- 4.4.2 Graphene-Based FET Biosensors for Antibody-Antigen Interactions -- 4.4.3 Graphene-Based FET Biosensors for Enzymatic Biosensors -- 4.4.4 Graphene-Based FET Biosensors for Sensing of Small Ions -- 4.5 Discussion -- 4.5.1 Summary -- 4.5.2 Challenges -- 4.5.3 Future Perspectives -- References -- Chapter 5 Graphene Field-Effect Transistors: Advanced Bioelectronic Devices for Sensing Applications -- 5.1 Introduction -- 5.1.1 Bioelectronic Nose Using Olfactory Receptor-Conjugated Graphene -- 5.1.2 Bioelectronics for Diagnosis Using Bioprobe-Modified Graphene -- 5.1.3 Biosensors for Environmental Component Monitoring Using Graphene -- 5.2 Conclusion -- Acknowledgments -- References -- Chapter 6 Thin-Film Transistors Based on Reduced Graphene Oxide for Biosensing -- 6.1 Introduction -- 6.2 Working Principle of TFT-Based Biosensing -- 6.3 TFTs Based on rGO for Biosensing -- 6.3.1 Protein Detection -- 6.3.2 Metal-Ion Detection -- 6.3.3 Nucleic Acid Detection -- 6.3.4 Small Biomolecular Biosensor -- 6.3.5 Living-Cell Biosensor -- 6.3.6 Gas Detection -- 6.4 Conclusion -- References -- Chapter 7 Towards Graphene-FET Health Sensors: Hardware and Implementation Considerations -- 7.1 Introduction to Health Sensing -- 7.2 Graphene-FET in Liquid for Sensing -- 7.2.1 Graphene Transistors -- 7.2.2 Graphene Hall Structures in Liquid -- 7.2.3 Graphene Membrane Transistors -- 7.3 Device Implementation Considerations.
7.3.1 Hardware and Instrumentation -- 7.3.2 Biostability and Biocompatibility -- 7.3.3 Medical Imaging Compatibility -- References -- Chapter 8 Quadratic Fit Analysis of the Nonlinear Transconductance of Disordered Bilayer Graphene Field-Effect Biosensors Functionalized with Pyrene Derivatives -- 8.1 Introduction -- 8.2 Fabrication of Graphene-Based Field-Effect Biosensors -- 8.3 Fundamental Sensing Parameters of Graphene-Based Field-Effect Biosensors -- 8.4 Disordered Bilayer Graphene Field-Effect Biosensors Functionalized with Pyrene Derivatives -- 8.5 Quadratic Fit Analysis of the Nonlinear Transconductance of Disordered Bilayer Graphene Field-Effect Biosensors -- 8.6 Conclusion -- Acknowledgment -- References -- Chapter 9 Theoretical and Experimental Characterization of Molecular Self-Assembly on Graphene Films -- 9.1 Introduction -- 9.2 Experimental Tools to Characterize Molecular Functionalization of Graphene -- 9.2.1 Considering the Three Distinct Techniques Available for Functionalizing Graphene Are the Outcomes of the Three Functionalization Techniques Consistent, Similar, Reproducible Across all Three Techniques? -- 9.2.2 What Tools and Methods Are Available to Perform Such a Characterization of Molecular Self-Assembly Across the Nano to Macro Scale? -- 9.3 Atomistic Insights to Guide Molecular Functionalization of Graphene -- References -- Chapter 10 The Holy Grail of Surface Chemistry of C VD Graphene: Effect on Sensing of cTNI as Model Analyte -- 10.1 Introduction -- 10.2 General Overview of C VD Graphene Production, Substrate Transfer and Characterization -- 10.3 Evaluation of Graphene Topographical Quality -- 10.4 CVD Graphene for FET-Based Sensing -- 10.4.1 Diazonium Chemistry on CVD Graphene -- 10.4.2 Pyrene Chemistry on CVD Graphene -- 10.5 Conclusion -- References.
Chapter 11 Sensing Mechanisms in Graphene Field-Effect Transistors Operating in Liquid -- 11.1 Introduction -- 11.2 Field-Effect Operation in Liquid Compared to Operation in Air -- 11.3 Caveats When Operating FETs in Liquid -- 11.4 Graphene FETs in Liquid -- 11.5 Measurement Modes -- 11.6 Using FETs for Sensing in Liquid - Sensing Mechanisms -- 11.7 The Electrochemical Perspective -- 11.8 The GLI and pH Sensing -- 11.9 Detection of Nucleic Acids -- 11.10 Other Examples -- 11.11 Concluding Remarks -- References -- Chapter 12 Surface Modification Strategies to Increase the Sensing Length in Electrolyte-Gated Graphene Field-Effect Transistors -- 12.1 Introduction -- 12.2 Ion-Exclusion and Donnan Potential -- 12.3 Surface Modification with Polymer Films -- 12.4 Surface Modification with Lipid Layers -- 12.5 Surface Modification with Mesoporous Materials -- 12.6 Kinetic Cost of Extending the Sensing Length -- 12.7 Conclusions -- References -- Chapter 13 Hybridized Graphene Field-Effect Transistors for Gas Sensing Applications -- 13.1 Introduction -- 13.2 Graphene -- 13.3 Graphene FET -- 13.4 Graphene in Gas Sensing -- 13.5 Graphene FET for Gas Sensing -- 13.6 Hybrid Graphene FET for Gas Sensing -- 13.7 Conclusion -- Acknowledgments -- References -- Chapter 14 Polyelectrolyte-Enzyme Assemblies Integrated into Graphene Field-Effect Transistors for Biosensing Applications -- 14.1 Introduction -- 14.2 Field-Effect Transistors Based on Reduced Graphene Oxide -- 14.3 Enzyme-Based GFET Sensors Fabricated via Layer-by-Layer Assembly -- 14.3.1 Layer-by-Layer (LbL) Assemblies of Polyethylenimine and Urease onto Reduced Graphene-Oxide-Based Field-Effect Transistors (rGO FETs) for the Detection of Urea -- 14.3.2 Ultrasensitive Sensing Through Enzymatic Cascade Reactions on Graphene-Based FETs -- 14.4 Conclusions -- References.
Chapter 15 Graphene Field-Effect Transistor Biosensor for Detection of Heart Failure-Related Biomarker in Whole Blood -- 15.1 Introduction -- 15.2 Experimental Systems and Procedures -- 15.2.1 Fabrication of GFET Sensor -- 15.2.2 Decoration of Platinum Nanoparticles -- 15.2.3 Surface Functionalization -- 15.2.4 Immunodetection in Whole Blood -- 15.2.5 Electrical Measurements -- 15.3 Sensing Principle of GFET for BNP Detection -- 15.4 Device Characterization -- 15.5 Sensing Performance -- 15.5.1 Stability and Reproducibility -- 15.5.2 Selectivity -- 15.5.3 Sensitivity -- 15.6 Clinical Application Prospects -- 15.7 Advantages, Limitations, and Outlook of the FET-Based BNP Assay -- References -- Chapter 16 Enzymatic Biosensors Based on the Electrochemical Functionalization of Graphene Field-Effect Transistors with Conducting Polymers -- 16.1 Introduction -- 16.2 Functionalization of Graphene Transistors with Poly(3-amino-benzylamine-co-aniline) Nanofilms -- 16.3 Construction of Acetylcholine Biosensors Based on GFET Devices Functionalized with Electropolymerized Poly(3-amino-benzylamine-co-aniline) Nanofilms -- 16.4 Glucose Detection by Graphene Field-Effect Transistors Functionalized with Electropolymerized Poly(3-amino-benzylamine-co-aniline) Nanofilms -- 16.5 Conclusions -- References -- Chapter 17 Graphene Field-Effect Transistors for Sensing Stress and Fatigue Biomarkers -- 17.1 Introduction -- 17.2 Molecular Biomarkers -- 17.3 Graphene Field-Effect Transistor Based Biosensors -- 17.3.1 Graphene -- 17.3.2 Structure of Graphene Field-Effect Transistors -- 17.3.3 Sensing Mechanism of GFET Biosensors -- 17.4 GFET Biosensor Fabrication -- 17.4.1 Graphene Production -- 17.4.2 Device Fabrication -- 17.4.3 Graphene Functionalization -- 17.5 GFET-Based Stress and Fatigue Biosensors -- 17.6 Flexible, Wearable GFET Biosensors, and Biosensor Systems.
17.7 Current Challenges and Future Perspective.
Titolo autorizzato: Graphene Field-Effect Transistors  Visualizza cluster
ISBN: 3-527-84337-X
3-527-84339-6
3-527-84338-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910876930503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui