Vai al contenuto principale della pagina

Graph-based clustering and data visualization algorithms / / Agnes Vathy-Fogarassy, Janos Abonyi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Vathy-Fogarassy Agnes Visualizza persona
Titolo: Graph-based clustering and data visualization algorithms / / Agnes Vathy-Fogarassy, Janos Abonyi Visualizza cluster
Pubblicazione: New York, : Springer, 2013
Edizione: 1st ed. 2013.
Descrizione fisica: 1 online resource (xiii, 110 pages) : illustrations (some color)
Disciplina: 006.601
Soggetto topico: Data mining
Cluster analysis - Data processing
Graph algorithms
Altri autori: AbonyiJanos <1974->  
Note generali: "ISSN: 2191-5768."
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Vector Quantisation and Topology-Based Graph Representation -- Graph-Based Clustering Algorithms -- Graph-Based Visualisation of High-Dimensional Data.
Sommario/riassunto: This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.
Titolo autorizzato: Graph-based clustering and data visualization algorithms  Visualizza cluster
ISBN: 1-4471-5158-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910741141503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in computer science.