Vai al contenuto principale della pagina

Genetic Algorithm Essentials / / by Oliver Kramer



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kramer Oliver Visualizza persona
Titolo: Genetic Algorithm Essentials / / by Oliver Kramer Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Edizione: 1st ed. 2017.
Descrizione fisica: 1 online resource (IX, 92 p. 38 illus. in color.)
Disciplina: 519.7
Soggetto topico: Computational intelligence
Artificial intelligence
Computational Intelligence
Artificial Intelligence
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Part I: Foundations -- Introduction -- Genetic Algorithms -- Parameters -- Part II: Solution Spaces -- Multimodality -- Constraints -- Multiple Objectives -- Part III: Advanced Concepts -- Theory -- Machine Learning -- Applications -- Part IV: Ending -- Summary and Outlook -- Index -- References.
Sommario/riassunto: This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
Titolo autorizzato: Genetic Algorithm Essentials  Visualizza cluster
ISBN: 3-319-52156-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910254170503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Studies in Computational Intelligence, . 1860-949X ; ; 679