Vai al contenuto principale della pagina

Fundamentals of Heat Exchanger Design



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Sekulić Dušan P Visualizza persona
Titolo: Fundamentals of Heat Exchanger Design Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2023
©2024
Edizione: 2nd ed.
Descrizione fisica: 1 online resource (771 pages)
Disciplina: 621.4025
Soggetto topico: Heat exchangers - Design and construction
Heat - Transmission
Altri autori: ShahR. K (Ramesh K.)  
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface to the Second Edition -- Preface to the First Edition -- Nomenclature -- About the Companion Website -- Chapter 1 Heat Exchangers: Semantics -- 1.1 Heat Transfer in a Heat Exchanger -- 1.1.1 Heat Exchanger Design -- 1.1.2 Heat Exchanger as Part of a System -- 1.1.3 Heat Exchanger as a Component -- 1.2 Modeling a Heat Exchanger -- 1.2.1 Temperature Distributions in Counterflow and Parallelflow -- 1.2.2 True Meaning of the Heat Exchanger Effectiveness -- 1.2.3 Temperature Difference Distributions -- 1.2.4 Temperature Distributions in Crossflow Exchangers -- 1.3 Irreversibilities in Heat Exchangers -- 1.3.1 Entropy Generation Caused by Finite Temperature Differences -- 1.3.2 Entropy Generation Associated with Fluid Mixing -- 1.3.3 Entropy Generation Caused by Fluid Friction -- 1.4 Thermodynamic Irreversibility and Temperature Cross Phenomena -- 1.4.1 Maximum Entropy Generation -- 1.4.2 External Temperature Cross and Fluid Mixing Analogy -- 1.4.3 Thermodynamic Analysis for 1-2 TEMA J Shell-and-Tube Heat Exchanger -- 1.5 Heuristic Approach to an Assessment of Heat Exchanger Effectiveness -- 1.6 Energy, Exergy, and Cost Balances in the Analysis of Heat Exchangers -- 1.6.1 Temperature-Enthalpy Rate Change Diagram -- 1.6.2 Analysis Based on an Energy Rate Balance -- 1.6.3 Analysis Based on Energy/Enthalpy and Cost Rate Balancing -- 1.6.4 Analysis Based on an Exergy Rate Balance -- 1.6.5 Thermodynamic Figure of Merit for Assessing Heat Exchanger Performance -- 1.6.6 Accounting for the Costs of Exergy Losses in a Heat Exchanger -- 1.7 Performance Evaluation Criteria Based on the Second Law of Thermodynamics -- Chapter 2 Overview of Heat Exchanger Design Methodology: The Art -- 2.1 Heat Exchanger Design Methodology -- 2.1.1 Process and Problem Specifications.
2.1.2 Thermal and Hydraulic Design -- 2.1.3 Mechanical Design -- 2.1.4 Manufacturing Considerations and Cost Estimates -- 2.1.5 Trade-off Factors -- 2.1.6 Optimum Design -- 2.1.7 Other Considerations -- 2.2 Interactions Among Design Considerations -- 2.3 Heat Exchanger Design for Manufacturing -- 2.3.1 Brazed Compact Heat Exchangers -- 2.3.2 Additive Manufacturing Heat Exchangers (3D Printing) -- Chapter 3 Thermal Design for Recuperators -- 3.1 Heat Flow and Thermal Resistance -- 3.2 Heat Exchanger Design Variables/Parameters -- 3.2.1 Assumptions for Heat Exchanger Analysis -- 3.2.2 Problem Formulation -- 3.2.3 Definitions of Dimensional Variables -- 3.2.4 Thermal Size and UA -- 3.3 The ε-NTU Method -- 3.3.1 Heat Exchanger Effectiveness ε -- 3.3.2 Heat Capacity Rate Ratio C* -- 3.3.3 Number of Transfer Units NTU -- 3.4 Effectiveness-NTU Relationships -- 3.4.1 Single-Pass Exchangers -- 3.5 The P-NTU Method -- 3.5.1 Temperature Effectiveness P -- 3.5.2 Number of Transfer Units, NTU -- 3.5.3 Heat Capacity Rate Ratio R -- 3.5.4 General P-NTU Functional Relationship -- 3.6 P-NTU Relationships -- 3.6.1 Parallel Counterflow Exchanger, Shell Fluid Mixed, 1-2 TEMA E Shell -- 3.6.2 Multipass Exchangers -- 3.7 The Mean Temperature Difference Method -- 3.7.1 Log-Mean Temperature Difference, LMTD -- 3.7.2 Log-Mean Temperature Difference Correction Factor F -- 3.8 F Factors for Various Flow Arrangements -- 3.8.1 Counterflow Exchanger -- 3.8.2 Parallelflow Exchanger -- 3.8.3 Other Basic Flow Arrangements -- 3.8.4 Heat Exchanger Arrays and Multipassing -- 3.9 Comparison of the ε-NTU, P-NTU, and MTD Methods -- 3.9.1 Solutions to the Sizing and Rating Problems -- 3.9.2 The P-NTU Method-Revisited -- 3.9.3 The MTD Method-Revisited -- 3.10 The υ−P and P1-P2 Methods -- 3.10.1 The υ−P Method -- 3.10.2 The P1-P2 Method.
3.11 Solution Methods for Determining Exchanger Effectiveness -- 3.11.1 Exact Analytical Methods -- 3.11.2 Approximate Methods -- 3.11.3 Numerical Methods -- 3.11.4 Matrix Formalism -- 3.11.5 Chain Rule Methodology -- 3.11.6 Flow-Reversal Symmetry -- 3.11.7 Rules for the Determination of Exchanger Effectiveness with One Fluid Mixed -- 3.12 Heat Exchanger Design Problems -- Chapter 4 Relaxation of Design Assumptions Extended Surfaces -- 4.1 Longitudinal Wall Heat Conduction Effects -- 4.1.1 Exchangers with C* = 0 -- 4.1.2 Single-Pass Counterflow Exchanger -- 4.1.3 Single-Pass Parallelflow Exchanger -- 4.1.4 Single-Pass Unmixed-Unmixed Crossflow Exchanger -- 4.1.5 Other Single-Pass Exchangers -- 4.1.6 Multipass Exchangers -- 4.2 Nonuniform Overall Heat Transfer Coefficients -- 4.2.1 Temperature Effect -- 4.2.2 Length Effect -- 4.2.3 Combined Effect -- 4.3 Extended Surface Exchangers -- 4.3.1 Thin Fin Analysis -- 4.3.2 Fin Efficiency -- 4.3.3 Fin Effectiveness -- 4.3.4 Extended Surface Efficiency -- 4.4 Additional Considerations for Shell-and-Tube Exchangers -- 4.4.1 Shell Fluid Bypassing and Leakage -- 4.4.2 Unequal Heat Transfer Area in Individual Exchanger Passes -- 4.4.3 Finite Number of Baffles -- 4.5 Flow Maldistribution -- 4.5.1 Geometry-Induced Flow Maldistribution -- 4.5.2 Operating Condition-Induced Flow Maldistribution -- 4.5.3 Mitigation of Flow Maldistribution -- Chapter 5 Thermal Design of Regenerators -- 5.1 Heat Transfer Analysis -- 5.1.1 Assumptions for Regenerator Heat Transfer Analysis -- 5.1.2 Definitions and Description of Important Parameters -- 5.1.3 Governing Equations -- 5.2 The (ε-NTUo) Method -- 5.2.1 Dimensionless Groups -- 5.2.2 Influence of Core Rotation and Valve Switching Frequency -- 5.2.3 Convection Conductance Ratio (hA)* -- 5.2.4 ε-NTU0 Results for a Counterflow Regenerator.
5.2.5 ε-NTUo Results for a Parallelflow Regenerator -- 5.3 The Λ-Π Method -- 5.3.1 Comparison of the ε-NTUo and Λ-Π Methods -- 5.3.2 Solutions for a Counterflow Regenerator -- 5.3.3 Solution for a Parallelflow Regenerator -- 5.4 Influence of Longitudinal Wall Heat Conduction -- 5.5 Influence of Transverse Wall Heat Conduction -- 5.5.1 Simplified Theory -- 5.6 Influence of Pressure and Carryover Leakages -- 5.6.1 Modeling of Pressure and Carryover Leakages for a Rotary Regenerator -- 5.7 Influence of Matrix Material, Size, and Arrangement -- Chapter 6 Heat Exchanger Pressure Drop Analysis -- 6.1 Introduction -- 6.1.1 Importance of Pressure Drop -- 6.1.2 Fluid Pumping Devices -- 6.1.3 Major Contributions to the Heat Exchanger Pressure Drop -- 6.1.4 Assumptions for Pressure Drop Analysis -- 6.2 Extended Surface Heat Exchanger Pressure Drop -- 6.2.1 Plate-Fin Heat Exchangers -- 6.2.2 Tube-Fin Heat Exchangers -- 6.3 Regenerator Pressure Drop -- 6.4 Tubular Heat Exchanger Pressure Drop -- 6.4.1 Tube Banks -- 6.4.2 Shell-and-Tube Exchangers -- 6.5 Plate Heat Exchanger Pressure Drop -- 6.6 Pressure Drop Associated with Fluid Distribution Elements -- 6.6.1 Pipe Losses -- 6.6.2 Sudden Expansion and Contraction Losses -- 6.6.3 Bend Losses -- 6.7 Pressure Drop Presentation -- 6.7.1 Nondimensional Presentation of Pressure Drop Data -- 6.7.2 Dimensional Presentation of Pressure Drop Data -- 6.8 Pressure Drop Dependence on Geometry and Fluid Properties -- Chapter 7 Surface Heat Transfer and Flow Friction Characteristics -- 7.1 Basic Concepts -- 7.1.1 Boundary Layers -- 7.1.2 Types of Flows -- 7.1.3 Free and Forced Convection -- 7.1.4 Basic Definitions -- 7.2 Dimensionless Groups -- 7.2.1 Fluid Flow -- 7.2.2 Heat Transfer -- 7.2.3 Dimensionless Surface Characteristics as a Function of the Reynolds Number.
7.3 Experimental Techniques for Determining Surface Characteristics -- 7.3.1 Steady-State Kays and London Technique -- 7.3.2 Wilson Plot Technique -- 7.3.3 Transient Test Techniques -- 7.3.4 Friction Factor Determination -- 7.4 Analytical and Semiempirical Heat Transfer and Friction Factor Correlations for Simple Geometries -- 7.4.1 Fully Developed Flows -- 7.4.2 Hydrodynamically Developing Flows -- 7.4.3 Thermally Developing Flows -- 7.4.4 Simultaneously Developing Flow -- 7.4.5 Extended Reynolds Analogy -- 7.4.6 Limitations of j vs Re Plot -- 7.5 Experimental Heat Transfer and Friction Factor Correlations for Complex Geometries -- 7.5.1 Tube Bundles -- 7.5.2 Plate Heat Exchanger Surfaces -- 7.5.3 Plate-Fin Extended Surfaces -- 7.5.4 Tube-Fin Extended Surfaces -- 7.5.5 Regenerator Surfaces -- 7.6 Influence of Temperature-Dependent Fluid Properties -- 7.6.1 Correction Schemes for Temperature-Dependent Fluid Properties -- 7.7 Influence of Superimposed Free Convection -- 7.7.1 Horizontal Circular Tubes -- 7.7.2 Vertical Circular Tubes -- 7.8 Influence of Superimposed Radiation -- 7.8.1 Liquids as Participating Media -- 7.8.2 Gases as Participating Media -- Chapter 8 Geometry of Heat Exchangers' Surfaces -- 8.1 Tubular Heat Exchangers -- 8.1.1 Inline Arrangement -- 8.1.2 Staggered Arrangement -- 8.2 Tube-Fin Heat Exchangers -- 8.2.1 Circular Fins on Circular Tubes -- 8.2.2 Plain Flat Fins on Circular Tubes -- 8.2.3 General Geometric Relationships for Tube-Fin Exchangers -- 8.3 Plate-Fin Heat Exchangers -- 8.3.1 Offset Strip Fin Exchanger -- 8.3.2 Corrugated Louver Fin Exchanger -- 8.3.3 General Geometric Relationships for Plate-Fin Surfaces -- 8.4 Regenerators With Continuous Cylindrical Passages -- 8.4.1 Triangular Passage Regenerator -- 8.5 Shell-and-Tube Exchangers with Segmental Baffles -- 8.5.1 Tube Count.
8.5.2 Window and Crossflow Section Geometry.
Sommario/riassunto: This book, 'Fundamentals of Heat Exchanger Design,' by Dušan P. Sekulić and Ramesh K. Shah, provides a comprehensive overview of heat exchanger design and construction. It covers various aspects of heat exchangers including thermal and hydraulic design, mechanical design, and manufacturing considerations. The book delves into methodologies like the ε-NTU method, P-NTU method, and mean temperature difference method, offering detailed analyses and comparisons. It also explores advanced topics such as entropy generation, energy and exergy balances, and performance evaluation criteria. Intended for engineers and students in the field of thermal sciences, the book aims to equip readers with the necessary tools and knowledge to design efficient heat exchangers.
Titolo autorizzato: Fundamentals of Heat Exchanger Design  Visualizza cluster
ISBN: 9781119883272
111988327X
9781119883296
1119883296
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910877622603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui