Vai al contenuto principale della pagina

First-order and Stochastic Optimization Methods for Machine Learning [[electronic resource] /] / by Guanghui Lan



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Lan Guanghui Visualizza persona
Titolo: First-order and Stochastic Optimization Methods for Machine Learning [[electronic resource] /] / by Guanghui Lan Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (XIII, 582 p. 18 illus., 16 illus. in color.)
Disciplina: 519.6
Soggetto topico: Mathematical optimization
Machine learning
Optimization
Machine Learning
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Machine Learning Models -- Convex Optimization Theory -- Deterministic Convex Optimization -- Stochastic Convex Optimization -- Convex Finite-sum and Distributed Optimization -- Nonconvex Optimization -- Projection-free Methods -- Operator Sliding and Decentralized Optimization.
Sommario/riassunto: This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.
Titolo autorizzato: First-order and Stochastic Optimization Methods for Machine Learning  Visualizza cluster
ISBN: 3-030-39568-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996418261803316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Springer Series in the Data Sciences, . 2365-5674