Vai al contenuto principale della pagina
| Autore: |
Dhanaselvam P. Suveetha
|
| Titolo: |
Field Effect Transistors
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (529 pages) |
| Disciplina: | 621.3815284 |
| Altri autori: |
Srinivasa RauK
RahiShiromani Balmukund
YadavDharmendra Singh
|
| Nota di contenuto: | Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Classical MOSFET Evolution: Foundations and Advantages -- 1.1 Introduction of Classical MOSFET -- 1.1.1 The Advantages of MOSFET -- 1.2 Dual-Gate MOSFET -- 1.2.1 Advantage -- 1.2.1.1 Scalability -- 1.2.1.2 Improvement of Gain -- 1.2.1.3 Low-Power Consumption -- 1.2.1.4 Better ION/IOFF -- 1.2.1.5 Higher Switching Speed -- 1.2.2 Application -- 1.2.2.1 RF Mixer -- 1.2.2.2 RF Amplifier -- 1.2.2.3 Controllable Gain -- 1.3 Gate-All-Around MOSFET -- 1.3.1 The Fabrication Procedure of GAA MOSFETs -- 1.3.2 Advantage of Gate-All-Around MOSFETs -- 1.3.2.1 Excellent Performance -- 1.3.2.2 The Ability to Shrink -- 1.3.2.3 Adjustable Nanosheet -- 1.3.2.4 Monitoring the Channel by Gate -- 1.4 ID-VG and ID-VG Characteristics of Conventional MOSFETs -- 1.4.1 Introduction to ID-VG Curves -- 1.4.2 Threshold Voltage and Saturation Region -- 1.4.2.1 Role of Threshold Voltage -- 1.4.2.2 Exploring the Saturation Region -- 1.5 Capacitance Characteristics of Conventional MOSFETs -- 1.5.1 The Role of Capacitance in MOSFET Behavior -- 1.5.2 CV Modeling of MOSFET Transistors -- 1.6 Frequency-Dependent Behavior -- 1.6.1 The Importance of Frequency-Dependent Analysis of MOSFET Transistors -- 1.6.2 Applications and Implications -- 1.6.2.1 RF Front-Ends -- 1.6.2.2 High-Speed Data Transmission -- 1.7 Conclusion -- References -- Chapter 2 Marvels of Modern Semiconductor Field-Effect Transistors -- 2.1 Introduction -- 2.2 Tunnel Field-Effect Transistor -- 2.2.1 Tunneling Junction -- 2.3 Junctionless Transistors -- 2.3.1 Physics and Properties -- 2.4 GAA-FETs the Origin of Nanowire FETs and Nanosheet FETs -- 2.5 Significance in Modern Electronics -- 2.6 Main Electrical Characteristics of GAA-FETs -- 2.7 GAA-FET Classification -- 2.8 Nanowire Field-Effect Transistors (NW-FETs). |
| 2.9 Nanosheet Field-Effect Transistors (NS-FETs) -- 2.10 Electrical Characteristics -- 2.11 Conclusion -- References -- Chapter 3 Introduction to Modern FET Technologies -- 3.1 Introduction -- 3.2 FinFETs (Fin Field-Effect Transistors) -- 3.2.1 The Evolution from Planar to FinFET -- 3.2.2 Unleashing the Power of FinFETs -- 3.2.3 Smaller Nodes, Greater Integration -- 3.2.4 Applications Across Industries -- 3.2.5 Challenges and Future Prospects -- 3.3 Unveiling Multi-Gate MOSFETs: A Symphony of Efficiency -- 3.3.1 Enter Multi-Gate MOSFETs -- 3.3.2 Three-Dimensional Mastery -- 3.3.3 Superior Switching Speeds -- 3.3.4 Power Efficiency on Point -- 3.3.5 Versatility Across Applications -- 3.3.6 The Future Landscape -- 3.4 Unveiling Nanoscale MOSFETs: The Miniaturization Marvel -- 3.4.1 Scaling Down to the Nanoscale -- 3.4.2 Quantum Tunneling and Beyond -- 3.4.3 FinFETs and Beyond -- 3.4.4 High-Performance Computing -- 3.4.5 Challenges and Innovations -- 3.4.6 The Future of Nanoscale MOSFETs -- 3.5 High-Electron Mobility Transistors (HEMTs): A Leap into the Future of FET Technology -- 3.5.1 The Essence of HEMTs -- 3.5.2 The Heterojunction Advantage -- 3.5.3 Applications Across Industries -- 3.5.4 Key Advantages of HEMTs -- 3.5.5 Future Prospects -- 3.6 Graphene Field-Effect Transistors (GFETs): Pioneering the Future of FET Technology -- 3.6.1 The Wonder of Graphene -- 3.6.2 The Structure of GFETs -- 3.6.3 Key Advantages of GFETs -- 3.6.4 Applications Across Industries -- 3.6.5 Challenges and Future Developments -- 3.7 Tunnel Field-Effect Transistors (TFETs): Navigating the Quantum Realm of Future Electronics -- 3.7.1 The Principle of Quantum Tunneling -- 3.7.2 How TFETs Work -- 3.7.3 Key Advantages of TFETs -- 3.7.4 Applications Across Industries -- 3.7.5 Challenges and Future Prospects. | |
| 3.8 Silicon Carbide (SiC) MOSFETs: Transforming Power Electronics for a Greener Future -- 3.8.1 The Power of Silicon Carbide -- 3.8.2 Advantages of SiC MOSFETs -- 3.8.3 Applications Across Industries -- 3.8.4 Challenges and Future Developments -- 3.9 Power MOSFETs: Empowering the Future of High-Efficiency Power Electronics -- 3.9.1 The Basics of Power MOSFETs -- 3.9.2 Key Features of Power MOSFETs -- 3.9.3 Applications Across Industries -- 3.9.4 Challenges and Future Developments -- 3.10 Gallium Nitride (GaN) High-Electron Mobility Transistors (HEMTs): Unleashing the Power of Wide Bandgap Semiconductors -- 3.10.1 The Wonders of Wide Bandgap -- 3.10.2 Key Features of GaN HEMTs -- 3.10.3 Applications Across Industries -- 3.10.4 Challenges and Future Prospects -- 3.11 Organic Field-Effect Transistors (OFETs): Bridging the Gap to Flexible and Sustainable Electronics -- 3.11.1 The Organic Advantage -- 3.11.2 Key Features of OFETs -- 3.11.3 Applications Across Industries -- 3.11.4 Challenges and Future Directions -- 3.12 Conclusion -- Bibliography -- Chapter 4 Scaling of Field-Effect Transistors -- 4.1 Introduction -- 4.2 Short-Channel Effect -- 4.3 FinFET Overview -- 4.3.1 History of Development -- 4.3.2 Difficulties and Challenges -- 4.4 GAAFET Overview -- 4.4.1 History of Development -- 4.4.2 Difficulties and Challenges -- 4.5 Conclusions -- References -- Chapter 5 Future Prospective Beyond CMOS Technology Design -- 5.1 Introduction -- 5.2 Spintronics -- 5.2.1 Applications -- 5.3 Carbon Nanotube Transistors -- 5.4 Memristor -- 5.4.1 Working Principle -- 5.5 Applications -- 5.6 Quantum Dots -- 5.6.1 Operation and Applications -- References -- Chapter 6 Nanowire Transistors -- 6.1 Introduction -- 6.2 Nanowire FETs -- 6.2.1 Device Design -- 6.3 Organic Nanowire Transistors -- 6.4 Conclusion -- References. | |
| Chapter 7 Advancement of Nanotechnology and NP-Based Biosensors -- 7.1 Introduction -- 7.2 Metal Oxide-Based Biosensors -- 7.3 Zinc Oxide-Based Biosensor -- 7.3.1 0D Nanostructures (Zero-Dimensional) -- 7.3.2 1D Nanostructures (One-Dimensional) -- 7.3.3 2D Nanostructures (Two-Dimensional) -- 7.3.4 3D Nanostructures (Three-Dimensional) -- 7.4 AuNP-Based Biosensors -- 7.5 GR-Based Biosensors -- References -- Chapter 8 Technology Behind Junctionless Semiconductor Devices -- 8.1 Introduction -- 8.2 Operating Modes Based on the Structure of the Device -- 8.3 TCAD Simulations -- 8.4 Effect of Temperature -- 8.5 Results and Discussions -- 8.6 Conclusion -- References -- Chapter 9 Breaking Barriers: Junctionless Metal-Oxide-Semiconductor Transistors Reinventing Semiconductor Technology -- 9.1 Introduction -- 9.1.1 The Evolution of Semiconductor Technology -- 9.1.2 Fundamentals of MOS Transistors -- 9.1.2.1 Structure of a MOS Transistor -- 9.1.2.2 Operation of a MOS Transistor -- 9.1.3 Overview of Junctionless Metal-Oxide-Semiconductor Transistors -- 9.2 Junctionless MOS Transistors: Principles and Concepts -- 9.2.1 Structure of Junctionless Transistor -- 9.2.2 Junctionless Nanowire Transistor (JNT) -- 9.2.3 Bulk Planar Junctionless Transistor (BPJLT) -- 9.3 Fabrication Techniques for Junctionless Transistors -- 9.3.1 Characteristics of Junctionless Transistors -- 9.3.1.1 Gated Resistor Characteristics -- 9.3.1.2 Gated Resistor and Intrinsic Device Delay Time -- 9.3.1.3 Variation of a Doping Concentration in an n-Type Gated Resistor -- 9.3.1.4 Transfer Characteristics -- 9.3.2 Comparison of Junction and Junctionless Transistor -- 9.4 Real-World Implementations of Junctionless Transistors -- 9.4.1 Current Limitations and Obstacles -- 9.5 Conclusion -- 9.6 Applications -- References. | |
| Chapter 10 Performance Estimation of Junctionless Tunnel Field-Effect Transistor (JL-TFET): Device Structure and Simulation Through TCAD -- 10.1 Introduction -- 10.1.1 Introduction to TFET -- 10.1.1.1 TFET Structure and Working -- 10.2 Junctionless TFETs -- 10.2.1 Motivation for Junctionless TFETs -- 10.2.2 Existing Structure of Junctionless TFET -- 10.3 Design Structure of Junctionless TFETs -- 10.3.1 Junctionless TFET Structure -- 10.4 Conclusion -- References -- Chapter 11 Science and Technology of Tunnel Field-Effect Transistors -- 11.1 Phenomenon of Quantum Tunneling -- 11.2 Tunneling Mathematics -- 11.2.1 Schrodinger's Equation -- 11.2.2 Tunneling Through Rectangular Potential Barrier -- 11.2.3 WKB Approximation Model -- 11.2.4 Local Band-to-Band Tunneling Models -- 11.2.4.1 Kane's Model -- 11.2.5 Non-Local Band-To-Band Tunneling Models -- 11.3 Tunnel Field-Effect Transistors (TFETs) -- 11.3.1 Limitations of MOSFET -- 11.3.2 Mechanism and Structure of TFET -- 11.3.3 Advantages and Limitations of TFET -- 11.3.4 Types of Tunneling -- 11.3.4.1 Point Tunneling -- 11.3.4.2 Line Tunneling -- 11.3.5 Methods of Enhancing Performance of TFETs -- 11.3.5.1 Doping Engineering -- 11.3.5.2 Geometry Engineering -- 11.3.5.3 Material and Band Engineering -- 11.3.5.4 Employing Techniques to Enhance TFET Performance -- 11.3.6 RF and Small Signal Analysis of TFETs -- 11.3.6.1 Small Signal Model of N-TFET in ON/OFF State -- 11.3.7 Applications of TFET Devices -- 11.4 Conclusion -- References -- Chapter 12 Circuits Designed for Energy-Harvesting Applications That Leverage TFETs to Achieve Extremely Low Power Consumption -- 12.1 Introduction -- 12.1.1 The Roadmap for Technology Scaling -- 12.1.2 New Approaches for Upcoming Technology Generations -- 12.2 Energy Harvesting in an Era Beyond Moore's Law. | |
| 12.3 Tunnel Field-Effect Transistors (TFETs) as a Vital Technology for Energy Harvesting. | |
| Sommario/riassunto: | Field Effect Transistors is an essential read for anyone interested in the future of electronics, as it provides a comprehensive yet accessible exploration of innovative semiconductor devices and their applications, making it a perfect resource for both beginners and seasoned professionals in the field. Miniaturization has become the slogan of the electronics industry. Field Effect Transistors serves as a short encyclopedia for young minds looking for solutions in the miniaturization of semiconductor devices. It explores the characteristics, novel materials used, modifications in device structure, and advancements in model FET devices. Though many devices following Moore's Law have been proposed and designed, a complete history of the existing and proposed semiconductor devices is not available. This book focuses on developments and research in emerging semiconductor FET devices and their applications, providing unique coverage of topics covering recent advancements and novel concepts in the field of miniaturized semiconductor devices. Field Effect Transistors is an easy-to-understand guide, making it excellent for those who are new to the subject, giving insight and analysis of recent developments and developed semiconductor device structures along with their applications. |
| Titolo autorizzato: | Field Effect Transistors ![]() |
| ISBN: | 9781394248506 |
| 1394248504 | |
| 9781394248490 | |
| 1394248490 | |
| 9781394248483 | |
| 1394248482 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911020194103321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |