Vai al contenuto principale della pagina

Federated Learning Over Wireless Edge Networks / / by Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, Dusit Niyato, Chunyan Miao



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Lim Wei Yang Bryan Visualizza persona
Titolo: Federated Learning Over Wireless Edge Networks / / by Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, Dusit Niyato, Chunyan Miao Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Edizione: 1st ed. 2022.
Descrizione fisica: 1 online resource (175 pages)
Disciplina: 929.374
006.31
Soggetto topico: Telecommunication
Computational intelligence
Machine learning
Artificial intelligence
Communications Engineering, Networks
Computational Intelligence
Machine Learning
Artificial Intelligence
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Federated Learning at Mobile Edge Networks: A Tutorial -- Multi-Dimensional Contract Matching Design for Federated Learning in UAV Networks -- Joint Auction-Coalition Formation Framework for UAV-assisted Communication-Efficient Federated Learning -- Evolutionary Edge Association and Auction in Hierarchical Federated Learning -- Conclusion and Future Works.
Sommario/riassunto: This book first presents a tutorial on Federated Learning (FL) and its role in enabling Edge Intelligence over wireless edge networks. This provides readers with a concise introduction to the challenges and state-of-the-art approaches towards implementing FL over the wireless edge network. Then, in consideration of resource heterogeneity at the network edge, the authors provide multifaceted solutions at the intersection of network economics, game theory, and machine learning towards improving the efficiency of resource allocation for FL over the wireless edge networks. A clear understanding of such issues and the presented theoretical studies will serve to guide practitioners and researchers in implementing resource-efficient FL systems and solving the open issues in FL respectively. Provides a concise introduction to Federated Learning (FL) and how it enables Edge Intelligence; Highlights the challenges inherent to achieving scalable implementation of FL at the wireless edge; Presents how FL can address challenges resulting from the confluence of AI and wireless communications.
Titolo autorizzato: Federated learning over wireless edge networks  Visualizza cluster
ISBN: 3-031-07838-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910616395503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Wireless Networks, . 2366-1445