Vai al contenuto principale della pagina
| Autore: |
Berger Lisa <1969->
|
| Titolo: |
Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields / / Lisa Berger [and seven others]
|
| Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2020] |
| ©2020 | |
| Descrizione fisica: | 1 online resource (144 pages) |
| Disciplina: | 516.352 |
| Soggetto topico: | Curves, Algebraic |
| Legendre's functions | |
| Rational points (Geometry) | |
| Birch-Swinnerton-Dyer conjecture | |
| Jacobians | |
| Abelian varieties | |
| Finite fields (Algebra) | |
| Classificazione: | 11G1011G3011G4014G0514G2514K15 |
| Persona (resp. second.): | HallChris <1975-> |
| PannekoekRené | |
| ParkJennifer Mun Young | |
| PriesRachel <1972-> | |
| SharifShahed <1977-> | |
| SilverbergAlice | |
| UlmerDouglas <1960-> | |
| Note generali: | "Forthcoming, volume 266, number 1295." |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | The curve, explicit divisors, and relations -- Descent calculations -- Minimal regular model, local invariants, and domination by a product of curves -- Heights and the visible subgroup -- The L-function and the BSD conjecture -- Analysis of J[p] and NS(Xd)tor -- Index of the visible subgroup and the Tate-Shafarevich group -- Monodromy of â„“-torsion and decomposition of the Jacobian. |
| Sommario/riassunto: | "We study the Jacobian J of the smooth projective curve C of genus r-1 with affine model yr = xr-1(x+ 1)(x + t) over the function field Fp(t), when p is prime and r [greater than or equal to] 2 is an integer prime to p. When q is a power of p and d is a positive integer, we compute the L-function of J over Fq(t1/d) and show that the Birch and Swinnerton-Dyer conjecture holds for J over Fq(t1/d). When d is divisible by r and of the form p[nu] + 1, and Kd := Fp([mu]d, t1/d), we write down explicit points in J(Kd), show that they generate a subgroup V of rank (r-1)(d-2) whose index in J(Kd) is finite and a power of p, and show that the order of the Tate-Shafarevich group of J over Kd is [J(Kd) : V ]2. When r > 2, we prove that the "new" part of J is isogenous over Fp(t) to the square of a simple abelian variety of dimension [phi](r)/2 with endomorphism algebra Z[[mu]r]+. For a prime with pr, we prove that J[](L) = {0} for any abelian extension L of Fp(t)"-- |
| Titolo autorizzato: | Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields ![]() |
| ISBN: | 1-4704-6253-2 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910813546003321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |