Vai al contenuto principale della pagina

Electronic Structure and Properties of Transition Metal Compounds : Theory and Applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Bersuker Isaac B Visualizza persona
Titolo: Electronic Structure and Properties of Transition Metal Compounds : Theory and Applications Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2025
©2025
Edizione: 3rd ed.
Descrizione fisica: 1 online resource (865 pages)
Disciplina: 546.6
Soggetto topico: Transition metal compounds
Altri autori: LiuYang  
Nota di contenuto: Cover -- Title Page -- Copyright Page -- „Contents -- Preface to the Third Edition -- Extract from the Preface to the Second Edition -- Extracts from the Preface to the First Edition -- Foreword to the First Edition -- Mathematical Symbols -- Abbreviations -- Chapter 1 Introduction: Subject and Methods -- 1.1 Objectives -- 1.1.1 Molecular Engineering and Intuitive Guesswork -- 1.1.2 Main Objectives of This Book in Comparison with Other Sources -- 1.2 Definitions of Chemical Bonding and Transition Metal Coordination System -- 1.2.1 Chemical Bonding as an Electronic Phenomenon -- 1.2.2 Definition of Coordination System -- 1.3 The Schrödinger Equation -- 1.3.1 Formulation -- 1.3.2 Role of Approximations -- Summary Notes -- References -- Chapter 2 Atomic States -- 2.1 One-Electron States -- 2.1.1 Angular and Radial Functions -- 2.1.2 Orbital Overlaps: Hybridized Functions -- 2.1.3 Spin-Orbital Interaction -- 2.1.4 Relativistic Atomic Functions -- 2.2 Multielectron States: Energy Terms -- 2.2.1 Electronic Configurations and Terms -- 2.2.2 Multielectron Wavefunctions -- 2.2.3 Slater-Condon and Racah Parameters -- 2.2.4 The Hartree-Fock Method -- Summary Notes -- Questions -- Exercises and Problems -- References -- Chapter 3 Symmetry Ideas and Group-Theoretical Description -- 3.1 Symmetry Transformations and Matrices -- 3.2 Groups of Symmetry Transformations -- 3.3 Classification of Point Groups -- Example 3.1. The Symmetry Group of an Octahedral Oh System and Its Classes -- 3.4 Representations of Groups and Matrices of Representations -- Example 3.2. The Rules of IrReps and Characters in C4v Point Group -- 3.5 Classification of Molecular Terms and Vibrations, Selection Rules, and The Wigner-Eckart Theorem -- Example 3.3. Energy Terms of Electronic Configuration e2 -- 3.6 Construction of Symmetrized Molecular Orbitals and Normal Vibrations.
Example 3.4. Construction of Eg-Symmetry-Adapted s MOs for Octahedral Oh Systems -- Example 3.5. Construction of T2g-Symmetry-Adapted p MOs for Octahedral Oh Systems -- Example 3.6. Normal Coordinates of a Regular Triangular Molecule X3 -- 3.7 The Notion of Double Groups -- Summary Notes -- Exercises and Problems -- References -- Chapter 4 Crystal Field Theory -- 4.1 Introduction -- 4.1.1 Brief History -- 4.1.2 Main Assumptions -- 4.2 Splitting of the Energy Levels of One d Electron in Ligand Fields -- 4.2.1 Qualitative Aspects and Visual Interpretation -- 4.2.2 Calculation of the Splitting Magnitude -- Example 4.1. Splitting of a d-Electron Term in Octahedral Crystal Fields -- 4.2.3 Group-Theoretical Analysis -- 4.3 Several d Electrons -- 4.3.1 Case of a Weak Field -- 4.3.2 Strong Crystal Fields and Low- and High-Spin Complexes -- Example 4.2. High-Spin and Low-Spin Octahedral Complexes of Iron -- 4.3.3 Energy Terms of Strong-Field Configurations -- 4.3.4 Arbitrary Ligand Fields and Tanabe-Sugano Diagrams -- 4.4 f-Electron Term Splitting -- 4.5 Crystal Field Parameters and Extrastabilization Energy -- 4.6 Limits of Applicability of Crystal Field Theory -- Summary Notes -- Questions -- Exercises and Problems -- References -- Chapter 5 Molecular Orbitals and Related Description of Electronic Structure -- 5.1 Basic Ideas of the MO LCAO Method -- 5.1.1 Main Assumptions -- 5.1.2 Secular Equation -- 5.1.3 Classification by Symmetry -- 5.1.4 Symmetrized Orbitals -- 5.1.5 Simplification of the Secular Equation -- 5.1.6 A Short Note on Band Structure of Transition Metal Solids -- 5.2 Charge Distribution and Bonding in the MO LCAO Method. The Case of Weak Covalency -- 5.2.1 Atomic Charges and Bond Orders -- Example 5.1. Shortcomings of Mulliken's Definition of Atomic Charges in Molecules -- 5.2.2 Bonding, Nonbonding, and Antibonding Orbitals.
5.2.3 Case of Weak Covalency -- 5.2.4 Angular Overlap Model -- 5.3 Methods of Calculation of MO Energies and LCAO Coefficients -- 5.3.1 SCF MO LCAO Approximation -- 5.3.2 Electron Correlation Effects -- 5.3.3 Basis Sets and Pseudopotentials -- EXAMPLE 5.2 Calculate the CuF2 Molecule Using Hartree-Fock and MP2 Methods -- Example 5.3. Calculate the Absorption and Emission spectra of [Cr(ddpd)2]3+ (ddpd = N,N -dimethyl- N,N -dipyridin-2-ylpyridine-2,6-diamine) using CASSCF and CASPT2 Methods -- 5.4 Density Functional Theory -- 5.4.1 Hohenberg-Kohn (HK) Method -- 5.4.2 Exchange-Correlation Functional -- 5.4.3 Time-Dependent DFT (TD-DFT) -- 5.4.4 Density-Functional Tight Binding (DFTB) -- Example 5.4. Calculation of ZnCl2 by the DFT Method -- Example 5.5. DFT Calculation of the Energy of Absorption of the O2 on the Surface of CoN4-ZnN4/C Material -- 5.5 Electronic Structure Calculations for Large Polyatomic Systems -- 5.5.1 Fragmentary Calculations -- 5.5.2 Molecular Mechanics -- Example 5.6. Application of Molecular Modeling to Transition Metal Complexes with Macrocycles -- 5.5.3 Combined Quantum/Classical (QM/MM) Methods -- EXAMPLE 5.7 Oxidative Addition of H2 to Pt(P(t-Bu)3)2 Treated by ONIOM Version ofQM/MM Methods -- Example 5.8. Iron Picket-Fence Porphyrin Treated by the QM/MM Method with Charge Transfer (QM/MM/CT) -- 5.5.4 Machine Learning Force Fields (MLFF) Method -- 5.6 Comparison of Methods and Computer Programs -- Summary Notes -- Exercises and Problems -- References -- Chapter 6 Electronic Structure and Chemical Bonding -- 6.1 Classification of Chemical Bonds by Electronic Structure and Role of d and f Electrons in Coordination Bonding -- 6.1.1 Criticism of the Genealogical Classification -- 6.1.2 Classification by Electronic Structure and Properties -- 6.1.3 Features of Coordination Bonds.
6.1.4 Coordination Bonding by Pre- and Post-transition Elements -- 6.2 Qualitative Aspects and Electronic Configurations -- 6.2.1 Most Probable MO Schemes -- 6.2.2 Electronic Configurations in Low- and High-Spin Complexes -- 6.2.3 Covalence Electrons and Ionization Potentials -- 6.3 Ligand Bonding -- 6.3.1 General Considerations: Multiorbital Bonds -- 6.3.2 Mono-orbital Bonds: Coordination of NH3 and H2O -- Example 6.1. Ab Initio Numerical SCF CI Calculations of the Electronic Structure of Mono-orbital Bonds: Ni(H2O)n and Ni(PH3)n, n =1, 2 -- 6.3.3 Diorbital Bonds: Coordination of the N2 Molecule -- Example 6.2. Electronic Structure and Bonding in FeN2 -- 6.3.4 Coordination of Carbon Monoxide -- Example 6.3. Bonding and Charge Transfer in the Pt-CO Complex -- Example 6.4. Bonding in M-CO with M = Cr, Fe, Co, Ni -- Example 6.5. Bonding in Sc-CO, Ni-CO, and Ni(CO)2 -- 6.3.5 σ + π Bonding -- Example 6.6. Electronic Structure of Transition Metal Hexacarbonils M(CO)6 -- 6.3.6 CO Bonding on Surfaces -- 6.3.7 Bonding of NO -- Example 6.7. Coordination of NO on the Ni(111) Surface -- 6.3.8 Coordination of C2H4 -- Example 6.8. Ethylene Bonding to Transition Metal Centers -- Example 6.9. Ethylene Bonding in PtCl3(C2H4)- and PdCl3(C2H4)- -- 6.3.9 Metal-Metal Bonds and Bridging Ligands -- Example 6.10. Multiple Metal-Metal Bonds in [Re2Cl8]2- and [Mo2Cl8]4- -- 6.4 Energies, Geometries, and Charge Distributions -- 6.4.1 Ionization Energies -- Example 6.11. Ab Initio Calculations of Ni(C3H5)2 -- 6.4.2 Total and Bonding Energies, Geometries, and Other Properties -- 6.5 Relativistic Effects -- 6.5.1 Relativistic Approaches -- 6.5.2 Orbital Contraction and Valence Activity -- Example 6.12. Relativistic Effects in Catalytic Activity of Pt and Pd Complexes -- 6.5.3 Bond Lengths, Bond Energies, and Vibrational Frequencies.
Example 6.13. Relativistic Effects in Metal Hydrides -- 6.5.4 Correlation Between Spin-Orbital Splitting and Bonding -- Example 6.14. Relativistic Semiempirical Calculation of PtCl6 2- -- 6.5.5 Other Relativistic Effects -- Summary Notes -- Exercises and Problems -- References -- Chapter 7 Vibronic Coupling in Formation, Deformation, and Transformation of Polyatomic Systems. The Jahn-Teller Effects -- 7.1 Molecular Vibrations -- 7.1.1 Adiabatic Approximation -- 7.1.2 Normal Coordinates and Harmonic Vibrations -- 7.1.3 Special Features of Vibrations of Coordination Compounds -- 7.2 Vibronic Coupling -- 7.2.1 Vibronic Constants -- 7.2.2 Orbital Vibronic Constants -- Example 7.1. Vibronic MO Description of Electronic Structure of N2 and CO -- 7.3 The Jahn-Teller Effects -- 7.3.1 The Jahn-Teller Theorem -- 7.3.2 The Pseudo-Jahn-Teller Effect -- 7.3.3 Hidden-Jahn-Teller and Hidden Pseudo-Jahn-Teller Effects. Four Modifications of Jahn-Teller Effects -- Example 7.2. Hidden-JTE Origin of Instability of the High-Symmetry Configuration of the Ozone Molecule -- 7.3.4 Configurations with h-PJTE and Spin Crossover -- Example 7.3. Hidden-PJTE Origin of Instability of the High-Symmetry Configuration of the CuF3 Molecule -- 7.3.5 The Renner-Teller Effect -- 7.3.6 The Jahn-Teller Effect in a Twofold-Degenerate Electronic State -- 7.3.7 Threefold-Degenerate Electronic States -- 7.4 Pseudo-Jahn-Teller Effect and the Two-Level Paradigm -- 7.4.1 Pseudo-Jahn-Teller (PJT) Instability -- 7.4.2 Uniqueness of the Vibronic Mechanism of Structural Configuration Instability. The Two-Level Paradigm -- Example 7.4. Numerical Confirmation of the Pseudo-Jahn-Teller Origin of Instability of High-Symmetry Configurations of Simple Molecules -- Example 7.5. Numerical Calculations Confirming the Pseudo-Jahn-Teller Origin of Configuration Instability of Coordination Systems.
7.4.3 Further Insight into the Pseudo-JTE and Hidden JTE.
Sommario/riassunto: "Transition metals commonly refers to 40 chemical elements (21-30, 39-48, 71-80, and 103-112) which represent the transition between group 2 and group 13 elements, are solids at room temperature (except mercury), tend to have high tensile strength, density, and melting and boiling points. Distinguished from pure metallic state with electronic band structures, transition metal elements form a large variety of coordination compounds with an incomplete d-electron subshell leading to different oxidation states, and other special properties. They form also coordination centers in a wide range of atomic formations including important metalo-biochemical centers, activation states of chemical reactions, and serve as good homogeneous or heterogeneous catalysts. Areas of applications of transition metal compounds are innumerable"--
Titolo autorizzato: Electronic Structure and Properties of Transition Metal Compounds  Visualizza cluster
ISBN: 1-394-17892-1
1-394-17891-3
1-394-17890-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911020059803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui