Vai al contenuto principale della pagina

Electron Density : Concepts, Computation and DFT Applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Chattaraj Pratim Kumar Visualizza persona
Titolo: Electron Density : Concepts, Computation and DFT Applications Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (611 pages)
Disciplina: 539.72112
Soggetto topico: Density functionals
Electron distribution
Altri autori: ChakrabortyDebdutta  
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 Levy-Perdew-Sahni Equation and the Kohn-Sham Inversion Problem -- 1.1 Introduction -- 1.2 One Equation & -- xrArr -- Several Methods -- Universal Nature of Different Density‐Based Kohn-Sham Inversion Algorithms -- 1.2.1 Generating Functional S[ρ] of Density‐Based Kohn-Sham Inversion -- 1.2.2 Condition on Generating Functional S[ρ] -- 1.2.3 Examples of Different Generating Functionals -- 1.2.4 Application to Spherical Systems -- 1.2.5 Using Random Numbers to do Density‐to‐Potential Inversion -- 1.3 General Penalty Method for Density‐to‐Potential Inversion -- 1.4 Understanding Connection Between Density and Wavefunction‐Based Inversion Methods Using LPS Equation -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 Electron Density, Density Functional Theory, and Chemical Concepts -- 2.1 Introduction -- 2.2 Viewing Chemical Concepts Through a DFT Window -- 2.3 Electron Fluid, Quantum Fluid Dynamics, Electronic Entropy, and a Local Thermodynamic Picture -- 2.4 Miscellaneous Offshoots from Electron Density Experience -- 2.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 3 Local and Nonlocal Descriptors of the Site and Bond Chemical Reactivity of Molecules -- 3.1 Introduction -- 3.2 Local and Nonlocal Reactivity Indexes -- 3.3 Site and Bond Reactivities -- 3.4 Concluding Remarks -- Acknowledgment -- References -- Chapter 4 Relativistic Treatment of Many‐Electron Systems Through DFT in CCG -- 4.1 Introduction -- 4.2 Theoretical Framework -- 4.2.1 Dirac Equation -- 4.2.2 Relativistic Density Functional Theory: Dirac-Kohn-Sham Method -- 4.2.3 Decoupling of Dirac Hamiltonian: DKH Methodology -- 4.2.4 DFT in Cartesian Grid -- 4.2.4.1 Basic Methodology -- 4.2.4.2 Hartree Potential in CCG.
4.2.4.3 Hartree Fock Exchange Through FCT in CCG -- 4.2.4.4 Orbital‐Dependent Hybrid Functionals via RS‐FCT -- 4.3 Computational Details -- 4.4 Results and Discussion -- 4.4.1 One‐Electron Atoms -- 4.4.2 Many‐Electron Systems -- 4.4.2.1 Grid Optimization -- 4.4.2.2 Ground‐State Energy of Atoms and Molecules -- 4.4.3 Application to Highly Charged Ions: He‐ and Li‐Isoelectronic Series -- 4.5 Future and Outlook -- Acknowledgement -- References -- Chapter 5 Relativistic Reduced Density Matrices: Properties and Applications -- 5.1 Introduction -- 5.2 Relativistic One‐Body Reduced Density Matrix -- 5.3 Properties of Relativistic 1‐RDM -- 5.3.1 Natural Spinors: An Efficient Framework for Low‐cost Calculations -- 5.3.1.1 Correlation Energy -- 5.3.1.2 Bond Length and Harmonic Vibrational Frequency -- 5.3.2 Natural Spinors as an Interpretive Tool -- 5.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Many‐Body Multi‐Configurational Calculation Using Coulomb Green's Function -- 6.1 Introduction -- 6.2 Theoretical Development -- 6.2.1 Presence of Magnetic Field -- 6.2.1.1 3D Electron Gas Model -- 6.2.1.2 2D Electron Gas Model -- 6.2.1.3 3D Exciton Model -- 6.2.1.4 2D Exciton Model -- 6.2.2 Absence of Magnetic Field -- 6.2.2.1 3D He‐Isoelectronic Ions -- 6.2.2.2 2D He‐Isoelectronic Ions -- 6.2.2.3 Energy Calculation Through Perturbation -- 6.2.2.4 Current Density of 2‐e System -- 6.3 Results and Discussion -- 6.3.1 3D Interacting Electron Gas -- 6.3.2 2D Interacting Electron Gas -- 6.3.3 3D Exciton Complexes -- 6.3.4 2D Exciton Complexes -- 6.3.5 3D He‐Isoelectronic Species -- 6.3.5.1 Analysis of E0(2) of He‐Isoelectronic Ions -- 6.3.5.2 Analysis of E0(3) of He‐Isoelectronic Ions -- 6.3.6 2D He‐Isoelectronic Species -- 6.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 7 Excited State Electronic Structure - Effect of Environment.
7.1 Introduction -- 7.2 Methodology -- 7.2.1 Quantum Mechanical Methods -- 7.2.1.1 Time‐Dependent Density Functional Theory -- 7.2.1.2 Active Space‐Based Methods -- 7.2.1.3 Configuration Interaction‐Based Approaches -- 7.2.1.4 Equation of Motion Coupled Cluster -- 7.2.2 Molecular Mechanical Methods -- 7.2.2.1 ONIOM -- 7.2.2.2 Mechanical Embedding -- 7.2.2.3 Electronic Embedding -- 7.2.2.4 Polarizable Embedding -- 7.3 Representative Examples -- 7.3.1 Photo‐Isomerization of Rhodopsin -- 7.3.2 DNA‐Base Excited States in Solution -- 7.3.3 Green Fluorescent Proteins -- 7.4 Conclusion -- Acknowledgement -- References -- Chapter 8 Electron Density in the Multiscale Treatment of Biomolecules -- 8.1 Introduction -- 8.2 Theoretical Background -- 8.2.1 Hybrid Quantum Mechanics-Molecular Mechanics Approach -- 8.3 Polarizable Density Embedding -- 8.4 Multi‐Scale QM/MM with Extremely Localized Molecular Orbitals -- 8.5 Multiple Active Zones in QM/MM Modelling -- 8.6 Reactivity Descriptors with QM/MM Modeling -- 8.7 Treatment of Hydrogen Bonding with QM/MM -- 8.8 Quantum Refinement of Crystal Structure with QM/MM -- 8.9 Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Subsystem Communications and Electron Correlation -- 9.1 Introduction -- 9.2 Discrete and Local Probability Networks in Molecular Bond Systems -- 9.3 Bond Descriptors of Molecular Communication Channels -- 9.4 Hartree-Fock Communications and Fermi Correlation -- 9.5 Communication Partitioning of Two‐Electron Probabilities -- 9.6 Communications in Interacting Subsystems -- 9.7 Illustrative Application to Reaction HSAB Principle -- 9.8 Conclusion -- References -- Chapter 10 Impacts of External Electric Fields on Aromaticity and Acidity for Benzoic Acid and Derivatives: Directionality, Additivity, and More -- 10.1 Introduction -- 10.2 Methodology -- 10.3 Computational Details.
10.4 Results and Discussion -- 10.5 Conclusions -- Acknowledgments -- References -- Chapter 11 A Divergence and Rotational Component in Chemical Potential During Reactions -- 11.1 Introduction -- 11.2 Chemical Descriptors -- 11.3 Charge and Energy Exchange -- 11.4 Fitness Landscape Diagrams -- 11.5 Chemical Reactions -- 11.6 Examining the Charge Exchange -- 11.6.1 Path pχη(ζ) and Charge Exchange -- 11.6.2 Systematic Changes Depending on the Starting Points on pχη(ζ) -- 11.6.3 Specific Solutions Using a pηω Path -- 11.7 Significance and Applications -- 11.8 Conclusions -- Acknowledgments -- References -- Chapter 12 Deep Learning of Electron Density for Predicting Energies: The Case of Boron Clusters -- 12.1 Introduction -- 12.2 Deep Learning of Electron Density -- 12.3 Neural Networks for Neutral Boron Clusters -- 12.4 Concluding Remarks -- Acknowledgements -- References -- Chapter 13 Density‐Based Description of Molecular Polarizability for Complex Systems -- 13.1 Introduction -- 13.2 Methodology and Computations -- 13.2.1 Information‐Theoretic Approach (ITA) Quantities -- 13.2.2 The GEBF Method -- 13.3 Results and Discussion -- 13.4 Conclusions and Perspectives -- Acknowledgment -- References -- Chapter 14 Conceptual Density Functional Theory‐Based Study of Pure and TMs‐Doped CdX (X & -- equals -- S, Se, Te -- TMs & -- equals -- Cu, Ag, and Au) Nano Cluster for Water Splitting and Spintronic Applications -- 14.1 Introduction -- 14.2 Methodology -- 14.3 Results and Discussion -- 14.3.1 Electronic Properties and CDFT‐Based Descriptors -- 14.4 Conclusion -- Acknowledgments -- Funding -- References -- Chapter 15 "Phylogenetic" Screening of External Potential Related Response Functions -- 15.1 Introduction -- 15.2 Alchemical Approach -- 15.3 The "Family Tree" -- 15.4 First‐order Sensitivities -- 15.5 Second‐Order Sensitivities.
15.5.1 Electric Dipole Polarizability -- 15.5.2 "Polarizability Potential" - Local Polarization -- 15.6 Alchemical Hardness -- 15.6.1 Local Alchemical Hardness -- 15.7 Alchemical Characteristic Radius -- 15.8 Linear Response Function -- 15.9 Conclusions -- References -- Chapter 16 On the Nature of Catastrophe Unfoldings Along the Diels-Alder Cycloaddition Pathway -- 16.1 Introduction -- 16.2 Molecular Symmetry and Elementary Catastrophe Unfoldings -- 16.2.1 The Case of Normal‐ and Inverse‐Electron‐Demand Diels-Alder Reactions -- 16.2.2 The C C Bond Breaking in a High Symmetry Environment -- 16.2.3 The Photochemical Ring Opening of 1,3‐Cyclohexadiene -- 16.3 Concluding Remarks -- Acknowledgments -- References -- Chapter 17 Designing Principles for Ultrashort H⋯H Nonbonded Contacts and Ultralong C C Bonds -- 17.1 Introduction -- 17.1.1 The Art of the Chemical Bond -- 17.1.2 Designing and Decoding Chemical Bond -- 17.2 Governing Factors for Ultrashort H⋯H Nonbonded Contacts -- 17.2.1 London Dispersion Interaction -- 17.2.2 Polarity and Charge Separation -- 17.2.3 Conformations and Orientations -- 17.2.4 Iron Maiden Effect -- 17.3 Elongation Strategies for C C Bonds -- 17.3.1 Steric Crowding Effect -- 17.3.2 Core-Shell Strategy and Scissor Effect -- 17.3.3 Negative Hyperconjugation Effect -- 17.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 18 Accurate Determination of Materials Properties: Role of Electron Density -- 18.1 Introduction -- 18.2 Materials Properties: Structure and Electronic Properties -- 18.2.1 Classification of Materials -- 18.2.2 Electronic Properties of Materials -- 18.3 Molecules to Materials, Essential Role of Electron Density -- 18.3.1 The Density Functional Theory (DFT) -- 18.3.2 The Hohenberg-Kohn Theorems -- 18.3.3 The Hohenberg-Kohn Variational Theorems -- 18.3.4 The Kohn-Sham (KS) Method.
18.3.5 Local Density Approximation.
Sommario/riassunto: This book delves into the advanced concepts of electron density and its applications in Density Functional Theory (DFT). It covers various aspects of DFT, including computational techniques, chemical reactivity descriptors, and the impact of electron density on molecular properties. The text is a collaborative work by experts from the Birla Institute of Technology and other institutions, providing insights into the role of electron density in chemical processes and material properties. It is intended for researchers and students in chemistry and material science, offering both theoretical and practical knowledge in the field.
Titolo autorizzato: Electron Density  Visualizza cluster
ISBN: 9781394217656
139421765X
9781394217632
1394217633
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911019734203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui