Vai al contenuto principale della pagina

Electric Vehicle Design



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Arora Krishan Visualizza persona
Titolo: Electric Vehicle Design Visualizza cluster
Pubblicazione: John Wiley & Sons, Inc, 2024
Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (358 pages)
Altri autori: TripathiSuman Lata  
SharmaHimanshu  
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Development of Braking Systems in Fuel Cell Electric Vehicles -- 1.1 Introduction -- 1.2 Historical Background of Fuel Cell -- 1.3 ADVISOR -- 1.4 Why Hydrogen is Preferred -- 1.5 What is a Fuel Cell? -- 1.6 Working of Fuel Cells -- 1.7 Types of Fuel Cells -- 1.7.1 Direct Methanol Fuel Cell (DMFC) -- 1.7.2 Phosphoric Acid Fuel Cell (PAFC) -- 1.7.3 Alkaline Fuel Cell (AFC) -- 1.7.4 Solid Oxide Fuel Cell (SOFC) -- 1.7.5 Molten Carbonate Fuel Cell (MCFC) -- 1.8 Block Diagram of Vehicle on MATLAB/Simulink -- 1.9 Braking System in Vehicle -- 1.10 Regenerative Braking System -- 1.11 Anti-Lock Braking System (ABS) -- 1.11.1 Component of ABS -- 1.11.1.1 Wheel Speed Sensor -- 1.11.1.2 Valves -- 1.11.1.3 Pumps -- 1.11.1.4 Electronic Control Unit -- 1.11.2 Types of the ABS Model -- 1.11.3 Anti-Lock Braking System Plot -- 1.12 Conclusion -- References -- Chapter 2 Design and Applications of Fuel Cells -- 2.1 Introduction -- 2.2 Types of Electric Vehicles -- 2.2.1 Battery Electric Vehicles (BEVs) -- 2.2.2 Hybrid Electric Vehicles (HEVs) -- 2.2.3 Plug-In Hybrid Electric Vehicles (PHEVs) -- 2.2.4 Fuel Cell Electric Vehicles (FCEVs) -- 2.3 Design Equations of Fuel Cells -- 2.3.1 Nernst Equation -- 2.3.2 Ohm's Law -- 2.3.3 Power Output -- 2.3.4 Efficiency Equation -- 2.3.5 Kinetic Current Density Equation -- 2.3.6 Over-Potential Equation -- 2.3.7 Heat Generation Equation -- 2.4 Designing of Fuel Cells -- 2.5 Types of Fuel Cells -- 2.6 Solid Oxide FCs (SOFCs) -- 2.6.1 Working of SOFCs -- 2.6.2 Advantages of SOFCs -- 2.6.3 Disadvantages of SOFCs -- 2.6.4 Applications of SOFCs -- 2.7 Alkaline Fuel Cells (AFCs) -- 2.7.1 Working of AFCs -- 2.7.2 Advantages of AFCs -- 2.7.3 Disadvantages of AFCs -- 2.7.4 Applications of AFCs -- 2.8 Molten Carbonate Fuel Cell (MCFC) -- 2.8.1 Working of MCFC.
2.8.2 Advantages of MCFCs -- 2.8.3 Disadvantages of MCFCs -- 2.8.4 Applications of MCFCs -- 2.9 Phosphoric Acid Fuel Cells (PAFCs) -- 2.9.1 Working of PAFCs -- 2.9.2 Advantages of PAFCs -- 2.9.3 Disadvantages of PAFCs -- 2.9.4 Applications of PAFCs -- 2.10 Polymer Electrolyte Membrane Fuel Cell (PEMFC) -- 2.10.1 Working of PEMFC -- 2.10.2 Advantages of PEMFCs -- 2.10.3 Advantages of PEMFCs -- 2.10.4 Applications of PEMFCs -- 2.11 Direct Methanol Fuel Cells (DMFCs) -- 2.11.1 Working of DFMC -- 2.11.2 Advantages of DMFCs -- 2.11.3 Disadvantages of DMFCs -- 2.11.4 Applications of DMFCs -- 2.12 Parameters Affecting the Performance of FCs -- References -- Chapter 3 Smart Energy Management and Monitoring System for Electric Vehicles with IoT Integration -- 3.1 Introduction -- 3.2 The Control of Electric Vehicles Using IoT -- 3.2.1 Battery Management System -- 3.2.2 Safe and Intelligent Driving -- 3.2.3 System for Fault Alert and Preventative Maintenance -- 3.2.4 Data from Telemetry -- 3.2.4.1 Battery Usage Information -- 3.2.4.2 Report on Charging -- 3.2.4.3 Notify About Nearby Charging Stations -- 3.2.4.4 Data on Driver Behavior -- 3.3 IoT Management Issues with Electric Vehicles -- 3.3.1 Internet Safety -- 3.3.2 Higher Price -- 3.3.3 Considering the Challenges and Advantages -- 3.4 Monitoring and Management Benefits of IoT -- 3.4.1 IoT and Battery Management Systems -- 3.4.2 IoT for Safe and Intelligent Driving -- 3.4.3 Theft Prevention -- 3.4.4 Detection of Falling or Crashes -- 3.4.5 Battery Leasing Made Simple -- 3.5 Predictive Maintenance System with Fault Alerts -- 3.6 IoT Management and Monitoring Issues with Electric Vehicles -- 3.6.1 Threat from Cyber Attacks -- 3.6.2 Electric Car Prices are Quite High -- 3.6.3 Technological Difficulty -- 3.6.4 Connectivity and Reliance on Power -- 3.6.5 Battery Management and Monitoring System.
3.6.6 Prototype of a Battery Charge Control and Monitoring System -- 3.6.7 Scenario for the Battery Monitoring and Management System -- 3.7 Microcontroller -- 3.7.1 DC Current Sensor -- 3.7.2 Fuel Gauge Module for Li-Lon Batteries -- 3.8 IoT-Based Systems for Battery Management and Monitoring -- 3.9 Design of Battery Charge Control and Monitoring System -- 3.10 Results and Discussion -- 3.11 Conclusions -- 3.12 Future Scope of IoT in Electric Vehicles -- References -- Chapter 4 A Review of Electric Vehicles: Technologies and Challenges -- 4.1 Introduction -- 4.2 Electric Motors -- 4.2.1 DC Series Motor -- 4.2.2 Brushless DC Motors -- 4.2.2.1 Out-Runner-Type BLDC Motor -- 4.2.2.2 In-Runner-Type BLDC Motor -- 4.2.3 Permanent Magnet Synchronous Motor -- 4.2.4 Three-Phase AC Induction Motors -- 4.2.5 Switched Reluctance Motors -- 4.3 Power Electronic Converters -- 4.3.1 Bi-Directional DC-DC Converter -- 4.3.1.1 Non-Isolated Converters -- 4.3.1.2 Isolated Converters -- 4.4 Battery in Electric Vehicles -- 4.4.1 Types of Battery in Electric Vehicles -- 4.4.2 Traditional Battery Charging Approach -- 4.4.2.1 Constant Current (CC) Charging Approach -- 4.4.2.2 Constant Voltage (CV) Charging Approach -- 4.4.2.3 Constant Current-Constant Voltage (CC-CV) Charging Approach -- 4.4.2.4 Multi-Stage Constant Current (MCC) Approach -- 4.5 Conclusion -- References -- Chapter 5 Electric Vehicle and Design Using MATLAB -- List of Abbreviations -- 5.1 Introduction -- 5.2 Motivation -- 5.2.1 History of EVs -- 5.3 Basic Fundamentals of EVs -- 5.4 Why Electric Vehicles? -- 5.5 Comparison Between ICV and EV -- 5.6 Classification of EVs -- 5.7 Design and Structure of EV -- 5.7.1 HEV -- 5.7.2 FCEV -- 5.7.3 PHEV -- 5.7.4 Basic Design of EV -- 5.8 Mathematical Model of an Electric Vehicle -- 5.9 Control Strategy of EVs -- 5.10 Design Methodology for Electric Vehicles (EVs).
5.11 Latest Emerging Technology in EV -- 5.12 Performance Valuation of BLDC Motor and Induction Motor for Electric Vehicle Propulsion Application -- 5.12.1 A Mathematical Model for a Brushless DC (BLDC) Motor-Driven Electric Vehicle -- 5.12.2 Induction Motor -- 5.12.3 Mathematical Model for an Induction Motor-Driven Electric Vehicle -- 5.12.4 Induction Motor Design with Their Specifications -- 5.13 Conclusion -- References -- Chapter 6 Model Order Reduction of Battery for Smart Battery Management System -- 6.1 Introduction -- 6.2 Problem Formulation -- 6.3 Modeling of Battery -- 6.4 Methodology for Model Order Reduction -- 6.5 Result and Discussion -- 6.6 Conclusion -- Appendix -- References -- Chapter 7 Power Electronic Converters for Electric Vehicle Application -- 7.1 Introduction -- 7.2 Types of Electrical Vehicle and Role of Power Electronic Converter -- 7.2.1 Battery Electric Vehicles (BEVs) -- 7.2.1.1 Power Electronics in BEVs -- 7.2.2 Plug-In Hybrid Electric Vehicles (Plug-In HEVs) -- 7.2.2.1 Power Electronics in Plug-In Hybrid Electric Vehicles (Plug-In HEV) -- 7.2.3 Hybrid Electric Vehicles (HEVs) -- 7.2.3.1 Series Hybrid Electric Vehicles (SHEVs) -- 7.2.3.2 Parallel Hybrid Electric Vehicles (PHEVs) -- 7.2.3.3 Series-Parallel Hybrid Electric Vehicles (SPHEVs) -- 7.2.3.4 Power Electronics in Hybrid Electric Vehicles (HEVs) -- 7.2.4 Fuel Cell Electric Vehicles (FCEVs) -- 7.2.4.1 Power Electronics in Fuel Cell Electric Vehicles (FCEVs) -- 7.2.5 Solar Cell Electric Vehicles (SCEVs) -- 7.2.5.1 Power Electronics in Solar Cell Electric Vehicles (SCEVs) -- 7.3 Recent Development in Power Electronic Converter -- 7.4 Power Electronic Converters in Electric, Hybrid, and Fuel Cell Vehicles -- 7.4.1 Power Electronic Converters in EVs -- 7.4.2 Categorization of Power Electronic Converters -- 7.5 Challenges in Power Electronic Vehicular System.
7.5.1 Efficiency -- 7.5.2 Longevity -- 7.5.3 Performance of EV -- 7.5.4 Luxurious Features -- 7.5.5 Safety -- 7.5.6 Overall Cost -- 7.5.7 Noise -- 7.6 Conclusion -- References -- Chapter 8 Integrating Electric Vehicles Into Smart Grids Through Data Analytics: Challenges and Opportunities -- 8.1 Introduction -- 8.2 Smart Grid and Electric Vehicle -- 8.3 Impact of Electric Vehicle-Based Data Analytics for Smart Grids -- 8.4 Importance of Resource Availability, Price, and Load for EV -- 8.5 Electric-Tariff Design Based on Impact of Electric Vehicle Usage -- 8.6 Data Analytics for Electric Vehicles -- 8.7 Machine Learning for EV Analytics -- 8.8 What are the Different ML Algorithms Used by Authors for EV Analytics? -- 8.9 Importance of Data Analysis in the EV Industry Using an Open Source Data -- 8.10 Description of the Dataset -- 8.11 Features and Factors That Influence the Prices of EVs -- 8.12 Price Prediction of EVs -- 8.13 Random Forest-Based Price Prediction of Electric Vehicles -- 8.14 Machine Learning Model -- 8.15 Electric Vehicle Usage in India -- 8.16 The Challenges of Adopting EV in India -- 8.17 How to Increase Renewable Energy in India to Meet EV Demand -- Conclusion -- References -- Chapter 9 Hybrid Electrical Vehicle Designs -- 9.1 Introduction -- 9.2 Plug-In Hybrid Electric Vehicles -- 9.3 Classification of HEVs -- 9.3.1 Series Hybrid -- 9.3.2 Parallel Hybrid -- 9.3.3 Series-Parallel Hybrid -- 9.4 Fuel Cell Electric Vehicles (FCEVs) -- 9.4.1 Micro-Hybrids -- 9.4.2 Mild Hybrids -- 9.4.3 Full Hybrids -- 9.5 Hybrid Electric Vehicle System Design and Analysis -- 9.6 Control Strategy in Series Hybrid Drivetrain Configuration -- 9.6.1 Modes of Operation -- 9.6.2 Max. SoC-of-PPS Control Strategy -- 9.7 Design of Fuel Cell Electric Vehicles with Fuel Economy -- 9.7.1 Traction Mode -- 9.8 Conclusion -- References.
Chapter 10 EV Battery Charging System.
Titolo autorizzato: Electric Vehicle Design  Visualizza cluster
ISBN: 1-394-20508-2
1-394-20509-0
1-394-20507-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910877989303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui