Vai al contenuto principale della pagina
| Autore: |
von Meier Alexandra
|
| Titolo: |
Electric Power Systems : A Conceptual Introduction
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| ©2024 | |
| Edizione: | 2nd ed. |
| Descrizione fisica: | 1 online resource (542 pages) |
| Disciplina: | 621.31 |
| Soggetto topico: | Electric power systems |
| Electric circuits | |
| Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- List of Figures -- Preface -- Acknowledgments -- About the Companion Website -- Chapter 1 Physics of Electricity -- 1.1 Basic Quantities -- 1.1.1 Charge -- 1.1.2 Potential or Voltage -- 1.1.3 Ground -- 1.1.4 Conductivity -- 1.1.5 Current -- 1.2 Ohm's Law -- 1.2.1 Resistance -- 1.2.2 Conductance -- 1.2.3 Insulation -- 1.3 Circuit Fundamentals -- 1.3.1 Static Charge -- 1.3.2 Closing a Circuit -- 1.3.3 Voltage Drop -- 1.3.4 Electric Shock -- 1.4 Resistive Heating -- 1.4.1 Calculating Resistive Heating -- 1.4.2 Transmission Voltage and Resistive Loses -- 1.5 Electric and Magnetic Fields -- 1.5.1 The Field as a Concept -- 1.5.2 Electric Fields -- 1.5.3 Magnetic Fields -- 1.5.4 Electromagnetic Induction -- 1.5.5 Electromagnetic Fields and Health Effects -- 1.5.6 Electromagnetic Radiation -- Problems and Questions -- Chapter 2 DC Circuit Analysis -- 2.1 Modeling Circuits -- 2.2 Series and Parallel Circuits -- 2.2.1 Resistance in Series -- 2.2.2 Resistance in Parallel -- 2.2.3 Network Reduction -- 2.2.4 Dual Concepts -- 2.2.5 Practical Aspects -- 2.3 Kirchhoff's Laws -- 2.3.1 Kirchhoff's Voltage Law -- 2.3.2 Kirchhoff's Current Law -- 2.3.3 Application to Simple Circuits -- 2.4 The Superposition Principle -- 2.5 Thévenin and Norton Equivalent Circuits -- 2.5.1 One‐ports: Battery and PV Cell -- 2.5.2 Thévenin and Norton Theorems -- 2.6 Magnetic Circuits -- Problems and Questions -- Chapter 3 AC Power -- 3.1 Alternating Current and Voltage -- 3.1.1 Historical Notes -- 3.1.2 Mathematical Description of Alternating Current -- 3.1.3 The rms Value -- 3.2 Power for the Resistive Case -- 3.2.1 Power Dissipated Versus Transmitted -- 3.2.2 Time‐Varying Resistive Power -- 3.3 Impedance -- 3.3.1 Inductance -- 3.3.2 Inductive Reactance -- 3.3.3 Capacitance -- 3.3.4 Capacitive Reactance -- 3.3.5 Complex Numbers. |
| 3.3.6 Complex Impedance -- 3.3.7 Complex Admittance -- 3.4 Complex Power -- 3.4.1 Real Power and Power Factor -- 3.4.2 Reactive Power -- 3.4.3 Power in the Complex Plane -- 3.4.4 Reactive Power in the Power System Context -- 3.4.5 Reactive Compensation -- 3.5 Phasors -- 3.5.1 Introduction -- 3.5.2 Derivation -- 3.5.3 Euler's Equation -- 3.5.4 Operations with Phasors -- 3.5.5 Ohm's Law in Complex Form -- 3.5.6 Kirchhoff's Laws with Phasors -- 3.5.7 Complex Power in Phasor Notation -- Problems and Questions -- Chapter 4 Three‐Phase Power -- 4.1 Three‐Phase Basics -- 4.1.1 Rationale for Three Phases -- 4.1.2 Number of Phases -- 4.1.3 Balancing Loads -- 4.1.4 Delta and Wye Connections -- 4.1.5 Practical Aspects -- 4.1.6 Three‐phase Complex Power -- 4.1.7 Three‐phase Impedance -- 4.2 Symmetrical Components -- 4.2.1 Converting Symmetrical Components -- 4.2.2 Ohm's Law with Symmetrical Components -- 4.3 Direct and Quadrature Components -- Problems and Questions -- Chapter 5 Power Quality -- 5.1 Voltage -- 5.1.1 Conservation Voltage Reduction -- 5.2 Frequency -- 5.3 Waveform and Harmonics -- 5.3.1 Current Versus Voltage Harmonics -- 5.3.2 Quantifying Harmonic Distortion -- 5.3.3 Distortion Power Factor -- 5.3.4 Transformers and Triplen Harmonics -- Problems and Questions -- Chapter 6 Loads -- 6.1 Types of Loads -- 6.1.1 Resistive Loads -- 6.1.2 Dimmer Circuits -- 6.1.3 Motors -- 6.1.4 Electronic Devices -- 6.1.5 Electric Vehicles -- 6.2 Single‐ and Multiphase Connections -- 6.3 Voltage Response of Loads -- 6.3.1 ZIP Load Model -- 6.3.2 Transient Response -- 6.4 Load in Aggregate -- 6.4.1 Historical Context -- 6.4.2 Coincident and Noncoincident Demand -- 6.4.3 Load Profiles and Load Duration Curve -- 6.4.4 Managing Load -- Problems and Questions -- Chapter 7 Transmission and Distribution Systems -- 7.1 System Structure -- 7.1.1 Interconnection. | |
| 7.1.2 Structural Features -- 7.1.3 International Differences in Distribution System Design -- 7.1.4 Stations and Substations -- 7.1.5 Topology -- 7.1.6 Power Islands -- 7.1.7 Loop Flow -- 7.1.8 Reconfiguring the System -- 7.2 Qualitative Characteristics of Power Lines -- 7.2.1 Conductors -- 7.2.2 Bundled Conductors -- 7.2.3 Towers, Insulators, and Other Components -- 7.2.4 DC Transmission -- 7.2.5 Superconducting Transmission -- 7.3 Loading -- 7.3.1 Thermal Limits -- 7.3.2 Stability Limit -- 7.3.3 Surge Impedance Loading -- 7.4 Voltage Control -- 7.4.1 Tap Changers -- 7.4.2 Reactive Compensation -- 7.5 Protection -- 7.5.1 Basics of Protection and Protective Devices -- 7.5.2 Protection Coordination -- 7.5.3 Unsymmetrical and Asymmetrical -- Problems and Questions -- Chapter 8 Transformers -- 8.1 General Properties -- 8.2 Transformer Heating -- 8.3 Delta and Wye Transformers -- 8.4 Autotransformers -- 8.5 Transformer Modeling -- 8.5.1 Nonideal Characteristics -- 8.5.2 Referred Impedance -- 8.5.3 Open‐Circuit and Short‐Circuit Tests -- 8.6 Voltage Regulation -- 8.6.1 Approximation -- 8.7 Per‐unit System -- Problems and Questions -- Chapter 9 Analyzing Transmission Lines -- 9.1 Transmission Line Inductance -- 9.1.1 Internal Flux Linkage -- 9.1.2 External Flux Linkage -- 9.1.3 Per‐Phase Inductance -- 9.1.4 Geometric Mean Distance and Radius -- 9.2 Transmission Line Capacitance -- 9.3 ABCD Parameters -- 9.3.1 Two‐Ports -- 9.3.2 Line Models Overview -- 9.3.3 Short Line Model -- 9.3.4 Short Line Phasor Relationship -- 9.3.5 Medium Line Model -- 9.3.5.1 Charging Current -- 9.3.6 Medium Line Qualitative Observations -- 9.3.7 Long Line Model: Introduction -- 9.3.8 Long Line Model: Wave Behavior -- 9.3.9 Long Line Model: ABCD Parameters -- 9.3.9.1 Lumped‐Circuit Equivalent -- 9.3.10 Lossless Line -- Problems and Questions -- Chapter 10 Machines. | |
| 10.1 The Simple Generator -- 10.2 D.C. Machine -- 10.2.1 The Paper Clip Motor -- 10.3 The Synchronous Generator -- 10.3.1 Basic Components and Functioning -- 10.3.2 Number of Poles -- 10.3.3 Other Design Aspects -- 10.4 Operational Control -- 10.4.1 Single Generator: Real Power -- 10.4.2 Single Generator: Reactive Power -- 10.4.3 Multiple Generators: Real Power -- 10.4.4 Multiple Generators: Reactive Power -- 10.5 Operating Limits -- 10.6 The Induction Machine -- 10.6.1 General Characteristics -- 10.6.2 Electromagnetic Characteristics -- 10.6.3 Reluctance Machine -- 10.7 Modeling Generators -- 10.7.1 Equivalent Circuit Model -- 10.7.2 Over‐ and Underexcitation -- 10.7.3 Power Transfer -- Problems and Questions -- Chapter 11 Matching Generation and Load -- 11.1 Load Frequency Control -- 11.1.1 Inertia -- 11.1.2 Primary Frequency Regulation -- 11.1.3 Secondary Frequency Regulation -- 11.1.3.1 Multiple Generators -- 11.1.4 Frequency Tolerance -- 11.1.5 Area Control Error -- 11.2 Economic Dispatch -- 11.2.1 Filling in the Load Duration Curve -- 11.2.2 Lagrangian Method -- Problems and Questions -- Chapter 12 Power Flow -- 12.1 Introduction -- 12.2 The Power Flow Problem -- 12.2.1 Network Representation -- 12.2.2 Choice of Variables -- 12.2.3 Nonlinearity -- 12.2.4 Types of Buses -- 12.2.5 Variables for Balancing Real Power -- 12.2.6 Variables for Balancing Reactive Power -- 12.2.7 The Slack Bus -- 12.2.8 Summary of Variables -- 12.3 Example with Interpretation of Results -- 12.3.1 Six‐bus Example -- 12.3.2 Tweaking the Case -- 12.3.3 Conceptualizing Power Flow -- 12.4 Power Flow Equations and Solution Methods -- 12.4.1 Derivation of Power Flow Equations -- 12.4.2 The Bus Admittance Matrix -- 12.4.3 Solution Methods -- 12.4.4 Iterative Computation -- 12.4.5 Power Flow Example -- 12.4.5.1 Low‐voltage Solution -- 12.4.6 Shortcuts. | |
| 12.4.6.1 Dishonest Newton-Raphson -- 12.4.6.2 Decoupled Power Flow -- 12.4.6.3 Fast‐Decoupled Power Flow -- 12.4.6.4 DC Power Flow -- 12.5 Applications -- 12.5.1 Optimal Power Flow -- 12.5.2 State Estimation -- 12.6 LinDistFlow -- 12.6.1 Derivation -- Problems and Questions -- Chapter 13 Limits -- 13.1 Adequacy -- 13.2 Reliability -- 13.2.1 Measures of Reliability -- 13.2.2 Valuing Reliability -- 13.3 Security -- 13.4 Stability -- 13.4.1 Overview -- 13.4.2 The Concept of Stability -- 13.4.3 Angle Stability -- 13.4.4 Transient Angle Stability -- 13.4.5 Voltage Stability -- 13.5 Power Transfer Limits -- 13.5.1 P-V Curve -- 13.5.2 V-Q Curve -- Problems and Questions -- Chapter 14 Power Electronics -- 14.1 Power Conversion: Introduction -- 14.2 Legacy Power Conversion Technologies -- 14.2.1 Mercury Arc Valves -- 14.2.2 Vacuum Diodes and Triodes -- 14.3 Solid‐State Technology -- 14.3.1 p-n Junctions and Diodes -- 14.3.2 Transistors -- 14.3.3 Thyristors -- 14.4 Inverters -- 14.4.1 Basic Inverter Function -- 14.4.2 Sample Inverter Circuit -- 14.4.3 Inverter Control -- 14.5 FACTS -- Chapter 15 Resources -- 15.1 Generation Resources -- 15.1.1 Hydroelectricity -- 15.1.2 Thermal Generation -- 15.1.2.1 Fossil Fuels -- 15.1.2.2 Biomass -- 15.1.2.3 Geothermal Power -- 15.1.2.4 Nuclear Power -- 15.1.2.5 Concentrating Solar Power -- 15.1.3 Solar Photovoltaics -- 15.1.4 Wind Power -- 15.2 Distributed Generation -- 15.2.1 DG Resources -- 15.2.1.1 Fuel Cells -- 15.2.1.2 Microturbines -- 15.2.1.3 Small Generators -- 15.2.1.4 Small Wind Turbines -- 15.2.2 DG Integration -- 15.3 Storage -- 15.3.1 Hydroelectric Storage -- 15.3.2 Batteries -- 15.3.3 Other Storage Technologies -- 15.3.3.1 Thermal Storage -- 15.3.3.2 Compressed Air -- 15.3.3.3 Flywheels -- 15.3.3.4 SMES -- 15.3.3.5 Supercapacitors -- 15.3.3.6 Hydrogen -- 15.4 Microgrids -- Chapter 16 Making the System Work. | |
| 16.1 Time Scales for Operation and Control. | |
| Sommario/riassunto: | This book provides a comprehensive introduction to electric power systems, aimed at both students and professionals in the field. It covers the fundamental principles of electricity, including charge, conductivity, and current, and explores key concepts such as Ohm's Law, voltage, and electric shock. The text delves into both DC and AC circuit analysis, three-phase power, and power quality. It also addresses critical topics in transmission and distribution systems, transformers, and power flow analysis. The book is designed to enhance understanding of power system operation, protection, and stability, with practical applications in modern power engineering. Suitable for those seeking foundational knowledge as well as insights into advanced topics like power electronics, renewable resources, and microgrids. |
| Titolo autorizzato: | Electric power systems ![]() |
| ISBN: | 9781394241019 |
| 1394241011 | |
| 9781394241033 | |
| 1394241038 | |
| 9781394241026 | |
| 139424102X | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911019498603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |