Vai al contenuto principale della pagina
| Autore: |
Lang Jan
|
| Titolo: |
Eigenvalues, embeddings and generalised trigonometric functions / / Jan Lang, David Edmunds
|
| Pubblicazione: | Berlin, : Springer, 2011 |
| Edizione: | 1st ed. 2011. |
| Descrizione fisica: | 1 online resource (XI, 220 p. 10 illus.) |
| Disciplina: | 515 |
| Soggetto topico: | Trigonometrical functions |
| Altri autori: |
EdmundsDavid
|
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | 1 Basic material -- 2 Trigonometric generalisations -- 3 The Laplacian and some natural variants -- 4 Hardy operators -- 5 s-Numbers and generalised trigonometric functions -- 6 Estimates of s-numbers of weighted Hardy operators -- 7 More refined estimates -- 8 A non-linear integral system -- 9 Hardy operators on variable exponent spaces. |
| Sommario/riassunto: | The main theme of the book is the study, from the standpoint of s-numbers, of integral operators of Hardy type and related Sobolev embeddings. In the theory of s-numbers the idea is to attach to every bounded linear map between Banach spaces a monotone decreasing sequence of non-negative numbers with a view to the classification of operators according to the way in which these numbers approach a limit: approximation numbers provide an especially important example of such numbers. The asymptotic behavior of the s-numbers of Hardy operators acting between Lebesgue spaces is determined here in a wide variety of cases. The proof methods involve the geometry of Banach spaces and generalized trigonometric functions; there are connections with the theory of the p-Laplacian. |
| Titolo autorizzato: | Eigenvalues, embeddings and generalised trigonometric functions ![]() |
| ISBN: | 9783642184291 |
| 3642184294 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910484158903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |