Vai al contenuto principale della pagina

Diffusion in social networks / / by Paulo Shakarian, Abhivav Bhatnagar, Ashkan Aleali, Elham Shaabani, Ruocheng Guo



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Shakarian Paulo Visualizza persona
Titolo: Diffusion in social networks / / by Paulo Shakarian, Abhivav Bhatnagar, Ashkan Aleali, Elham Shaabani, Ruocheng Guo Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , [2015]
©2015
Edizione: 1st ed.
Descrizione fisica: 1 online resource (110 p.)
Disciplina: 519.233
Soggetto topico: Intel·ligència artificial
Xifratge (Informàtica)
Xarxes socials en línia
Artificial intelligence
Data encryption (Computer science)
Artificial Intelligence
Cryptology
Persona (resp. second.): BhatnagarAbhivav
AlealiAshkan
ShaabaniElham
GuoRuocheng
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references at the end of each chapters.
Nota di contenuto: Introduction -- The SIR Model and Identification of Spreaders -- The Tipping Model and the Minimum Seed Problem -- The Independent Cascade and Linear Threshold Models -- Logic Programming Based Diffusion Models -- Evolutionary Graph Theory -- Examining Diffusion in the Real World -- Conclusion.
Sommario/riassunto: This book presents the leading models of social network diffusion that are used to demonstrate the spread of disease, ideas, and behavior. It introduces diffusion models from the fields of computer science (independent cascade and linear threshold), sociology (tipping models), physics (voter models), biology (evolutionary models), and epidemiology (SIR/SIS and related models). A variety of properties and problems related to these models are discussed including identifying seeds sets to initiate diffusion, game theoretic problems, predicting diffusion events, and more. The book explores numerous connections between social network diffusion research and artificial intelligence through topics such as agent-based modeling, logic programming, game theory, learning, and data mining. The book also surveys key empirical results in social network diffusion, and reviews the classic and cutting-edge research with a focus on open problems.
Titolo autorizzato: Diffusion in Social Networks  Visualizza cluster
ISBN: 3-319-23105-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299202103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Computer Science, . 2191-5768