Vai al contenuto principale della pagina
| Autore: |
Yu F. Richard
|
| Titolo: |
Deep Reinforcement Learning for Wireless Networks / / by F. Richard Yu, Ying He
|
| Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
| Edizione: | 1st ed. 2019. |
| Descrizione fisica: | 1 online resource (78 pages) |
| Disciplina: | 006.31 |
| Soggetto topico: | Wireless communication systems |
| Mobile communication systems | |
| Artificial intelligence | |
| Electrical engineering | |
| Wireless and Mobile Communication | |
| Artificial Intelligence | |
| Communications Engineering, Networks | |
| Persona (resp. second.): | HeYing |
| Sommario/riassunto: | This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results.. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool. . |
| Titolo autorizzato: | Deep Reinforcement Learning for Wireless Networks ![]() |
| ISBN: | 3-030-10546-6 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910337637703321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |