Vai al contenuto principale della pagina

Data-driven Optimization and Control for Autonomous Energy Systems / / by Gang Wang, Jian Sun, Jie Chen



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wang Gang Visualizza persona
Titolo: Data-driven Optimization and Control for Autonomous Energy Systems / / by Gang Wang, Jian Sun, Jie Chen Visualizza cluster
Pubblicazione: Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (259 pages)
Disciplina: 621.31
Soggetto topico: Electric power production
Automation
Mechanical Power Engineering
Altri autori: SunJian  
ChenJie  
Nota di contenuto: Introduction -- State Estimation via Composite Optimization -- State Estimation from Rank One Measurements -- State Estimation and Forecasting via Deep Unrolled Neutral Networks -- Data Graph Prior for State Estimation -- Stochastic Optimization -- Conclusion.
Sommario/riassunto: This book introduces a pioneering framework for monitoring and controlling autonomous energy systems, distinguished by its use of physics-informed deep neural networks. These networks provide accurate estimations and forecasts, interlacing with advanced composite optimization algorithms to simplify the complex processes of state estimation. This approach not only boosts operational efficiency but also maximizes flexibility through a data-driven methodology integrated with physics-based principles. The framework leverages the power of neural networks to define the intricate relationship between system states and control policies, offering precise, robust control strategies that adapt to dynamically changing system conditions. This book is essential reading for professionals looking to enhance the performance and flexibility of energy systems through cutting-edge technology.
Titolo autorizzato: Data-Driven Optimization and Control for Autonomous Energy Systems  Visualizza cluster
ISBN: 981-9517-82-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911034939903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Energy Series