Vai al contenuto principale della pagina

Connected Sets in Global Bifurcation Theory / / by Boris Buffoni, John Toland



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Buffoni Boris Visualizza persona
Titolo: Connected Sets in Global Bifurcation Theory / / by Boris Buffoni, John Toland Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (XII, 101 p. 11 illus.)
Disciplina: 515.7
Soggetto topico: Functional analysis
Topology
Differential equations
Dynamics
Functional Analysis
Differential Equations
Dynamical Systems
Persona (resp. second.): TolandJohn
Nota di contenuto: - 1. Introduction -- 2. Set Theory Foundations -- 3. Metric Spaces -- 4. Types of Connectedness -- 5. Congestion Points -- 6. Decomposable and Indecomposable Continua -- 7. Pathological Examples.
Sommario/riassunto: This book explores the topological properties of connected and path-connected solution sets for nonlinear equations in Banach spaces, focusing on the distinction between these concepts. Building on Rabinowitz's dichotomy, the authors introduce "congestion points"—where connected sets fail to be locally connected—and show their absence ensures path-connectedness. Through rigorous analysis and examples, the book provides new insights into global bifurcations. Structured into seven chapters, the book begins with an introduction to global bifurcation theory and foundational concepts in set theory and metric spaces. Subsequent chapters delve into connectedness, local connectedness, and congestion points, culminating in the construction of intricate examples that highlight the complexities of solution sets. The authors' careful selection of material and fluent writing style make this work a valuable resource for PhD students and experts in functional analysis and bifurcation theory.
Titolo autorizzato: Connected Sets in Global Bifurcation Theory  Visualizza cluster
ISBN: 3-031-87051-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910999692103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Mathematics, . 2191-8201