Vai al contenuto principale della pagina
| Autore: |
Dāsa Asita Kumāra
|
| Titolo: |
Computational Intelligence in Pattern Recognition : Proceedings of CIPR 2024, Volume 1 / / edited by Asit Kumar Das, Janmenjoy Nayak, Bighnaraj Naik, M. Himabindu, S. Vimal, Danilo Pelusi
|
| Pubblicazione: | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Edizione: | 1st ed. 2025. |
| Descrizione fisica: | 1 online resource (766 pages) |
| Disciplina: | 006.3 |
| Soggetto topico: | Computational intelligence |
| Artificial intelligence | |
| Image processing - Digital techniques | |
| Computer vision | |
| Computer networks - Security measures | |
| Computational Intelligence | |
| Artificial Intelligence | |
| Computer Imaging, Vision, Pattern Recognition and Graphics | |
| Mobile and Network Security | |
| Altri autori: |
NayakJanmenjoy
NaikBighnaraj
HimabinduM
VimalS
PelusiDanilo
|
| Sommario/riassunto: | This book features high-quality research papers presented at the 6th International Conference on Computational Intelligence in Pattern Recognition (CIPR 2024), held at Maharaja Sriram Chandra Bhanja Deo University (MSCB University), Baripada, Odisha, India, during March 15–16, 2024. It includes practical development experiences in various areas of data analysis and pattern recognition, focusing on soft computing technologies, clustering and classification algorithms, rough set and fuzzy set theory, evolutionary computations, neural science and neural network systems, image processing, combinatorial pattern matching, social network analysis, audio and video data analysis, data mining in dynamic environments, bioinformatics, hybrid computing, big data analytics, and deep learning. It also provides innovative solutions to the challenges in these areas and discusses recent developments. |
| Titolo autorizzato: | Computational Intelligence in Pattern Recognition ![]() |
| ISBN: | 9789819780907 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910984590103321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |