Vai al contenuto principale della pagina

Complex semisimple quantum groups and representation theory / / Christian Voigt, Robert Yuncken



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Voigt Christian Visualizza persona
Titolo: Complex semisimple quantum groups and representation theory / / Christian Voigt, Robert Yuncken Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2020]
©2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (X, 376 p. 25 illus.)
Disciplina: 512.2
Soggetto topico: Group theory
Persona (resp. second.): YunckenRobert
Sommario/riassunto: This book provides a thorough introduction to the theory of complex semisimple quantum groups, that is, Drinfeld doubles of q-deformations of compact semisimple Lie groups. The presentation is comprehensive, beginning with background information on Hopf algebras, and ending with the classification of admissible representations of the q-deformation of a complex semisimple Lie group. The main components are: - a thorough introduction to quantized universal enveloping algebras over general base fields and generic deformation parameters, including finite dimensional representation theory, the Poincaré-Birkhoff-Witt Theorem, the locally finite part, and the Harish-Chandra homomorphism, - the analytic theory of quantized complex semisimple Lie groups in terms of quantized algebras of functions and their duals, - algebraic representation theory in terms of category O, and - analytic representation theory of quantized complex semisimple groups. Given its scope, the book will be a valuable resource for both graduate students and researchers in the area of quantum groups.
Titolo autorizzato: Complex semisimple quantum groups and representation theory  Visualizza cluster
ISBN: 3-030-52463-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996418259003316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 2264