Vai al contenuto principale della pagina

Colored Discrete Spaces : Higher Dimensional Combinatorial Maps and Quantum Gravity / / by Luca Lionni



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Lionni Luca Visualizza persona
Titolo: Colored Discrete Spaces : Higher Dimensional Combinatorial Maps and Quantum Gravity / / by Luca Lionni Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (XVIII, 218 p. 107 illus., 98 illus. in color.)
Disciplina: 530.15
Soggetto topico: Physics
Gravitation
Geometry
Mathematical Methods in Physics
Classical and Quantum Gravitation, Relativity Theory
Nota di bibliografia: Includes bibliographical references at the end of each chapters.
Nota di contenuto: Colored Simplices and Edge-Colored Graphs -- Bijective Methods -- Properties of Stacked Maps -- Summary and Outlook.
Sommario/riassunto: This book provides a number of combinatorial tools that allow a systematic study of very general discrete spaces involved in the context of discrete quantum gravity. In any dimension D, we can discretize Euclidean gravity in the absence of matter over random discrete spaces obtained by gluing families of polytopes together in all possible ways. These spaces are then classified according to their curvature. In D=2, it results in a theory of random discrete spheres, which converge in the continuum limit towards the Brownian sphere, a random fractal space interpreted as a quantum random space-time. In this limit, the continuous Liouville theory of D=2 quantum gravity is recovered. Previous results in higher dimension regarded triangulations, converging towards a continuum random tree, or gluings of simple building blocks of small sizes, for which multi-trace matrix model results are recovered in any even dimension. In this book, the author develops a bijection with stacked two-dimensional discrete surfaces for the most general colored building blocks, and details how it can be used to classify colored discrete spaces according to their curvature. The way in which this combinatorial problem arrises in discrete quantum gravity and random tensor models is discussed in detail.
Titolo autorizzato: Colored Discrete Spaces  Visualizza cluster
ISBN: 3-319-96023-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910300542803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Theses, Recognizing Outstanding Ph.D. Research, . 2190-5053