Vai al contenuto principale della pagina

Chemistry : an introduction to organic, inorganic, and physical chemistry / / Catherine Housecroft, Edwin Constable



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Housecroft Catherine Visualizza persona
Titolo: Chemistry : an introduction to organic, inorganic, and physical chemistry / / Catherine Housecroft, Edwin Constable Visualizza cluster
Pubblicazione: Harlow, England : , : Pearson, , [2010]
©2010
Edizione: Fourth edition.
Descrizione fisica: 1 online resource (xxxii, 1538 páginas) : ilustraciones
Disciplina: 540
Soggetto topico: Chemistry
Persona (resp. second.): ConstableEdwin C.
Note generali: Includes index.
Nota di contenuto: Cover -- Contents -- Preface -- Acknowledgements -- 1 Some basic concepts -- 1.1 What is chemistry and why is it important -- 1.2 What is the IUPAC -- 1.3 SI units -- 1.4 The proton, electron and neutron -- 1.5 The elements -- 1.6 States of matter -- 1.7 Atoms and isotopes -- 1.8 The mole and the Avogadro constant -- 1.9 Gas laws and ideal gases -- 1.10 The periodic table -- 1.11 Radicals and ions -- 1.12 Molecules and compounds: bond formation -- 1.13 Molecules and compounds: relative molecular mass and moles -- 1.14 Concentrations of solutions -- 1.15 Reaction stoichiometry -- 1.16 Oxidation and reduction, and oxidation states -- 1.17 Empirical, molecular and structural formulae -- 1.18 Basic nomenclature -- 1.19 Final comments -- Problems -- 2 Thermochemistry -- 2.1 Factors that control reactions -- 2.2 Change in enthalpy of a reaction -- 2.3 Measuring changes in enthalpy: calorimetry -- 2.4 Standard enthalpy of formation -- 2.5 Calculating standard enthalpies of reaction -- 2.6 Enthalpies of combustion -- 2.7 Hess's Law of Constant Heat Summation -- 2.8 Thermodynamic and kinetic stability -- 2.9 Phase changes: enthalpies of fusion and vaporization -- 2.10 An introduction to intermolecular interactions -- Summary -- Problems -- 3 Atoms and atomic structure -- 3.1 The importance of electrons -- 3.2 The classical approach to atomic structure -- 3.3 The Bohr atom -- still a classical picture -- 3.4 Quanta -- 3.5 Wave--particle duality -- 3.6 The uncertainty principle -- 3.7 The Schro¨dinger wave equation -- 3.8 Probability density -- 3.9 The radial distribution function, 4 -- 3.10 Quantum numbers -- 3.11 Atomic orbitals -- 3.12 Relating orbital types to the principal quantum number -- 3.13 More about radial distribution functions -- 3.14 Applying the Schro¨dinger equation to the hydrogen atom -- 3.15 Penetration and shielding.
3.16 The atomic spectrum of hydrogen and selection rules -- 3.17 Many-electron atoms -- 3.18 The aufbau principle -- 3.19 Electronic configurations -- 3.20 The octet rule -- 3.21 Monatomic gases -- Summary -- Problems -- 4 Homonuclear covalent bonds -- 4.1 Introduction -- 4.2 Measuring internuclear distances -- 4.3 The covalent radius of an atom -- 4.4 An introduction to bond energy: the formation of the diatomic molecule H2 -- 4.5 Bond energies and enthalpies -- 4.6 The standard enthalpy of atomization of an element -- 4.7 Determining bond enthalpies from standard heats of formation -- 4.8 The nature of the covalent bond in H2 -- 4.9 Lewis structures -- 4.10 The problem of describing electrons in molecules -- 4.11 Valence bond (VB) theory -- 4.12 Molecular orbital (MO) theory -- 4.13 What do VB and MO theories tell us about the molecular properties of H2 -- 4.14 Homonuclear diatomic molecules of the first row elements: the s-block -- 4.15 Orbital overlap of p atomic orbitals -- 4.16 Bond order -- 4.17 Relationships between bond order, bond length and bond enthalpy -- 4.18 Homonuclear diatomic molecules of the first row p-block elements: F2 and O2 -- 4.19 Orbital mixing and -- crossover -- 4.20 Homonuclear diatomic molecules of the first row p-block elements: B2, C2 and N2 -- 4.21 Periodic trends in the homonuclear diatomic molecules of the first row elements -- 4.22 The diatomic species O2, [O2]þ, [O2] and [O2]2 -- 4.23 Group trends among homonuclear diatomic molecules -- Summary -- Problems -- 5 Heteronuclear diatomic molecules -- 5.1 Introduction -- 5.2 Lewis structures for HF, LiF and LiH -- 5.3 The valence bond approach to the bonding in HF, LiF and LiH -- 5.4 The molecular orbital approach to the bonding in a heteronuclear diatomic molecule -- 5.5 The molecular orbital approach to the bonding in LiH, LiF and HF.
5.6 Bond enthalpies of heteronuclear bonds -- 5.7 Electronegativity -- Pauling values ( P ) -- 5.8 The dependence of electronegativity on oxidation state and bond order -- 5.9 An overview of the bonding in HF -- 5.10 Other electronegativity scales -- 5.11 Polar diatomic molecules -- 5.12 Isoelectronic species -- 5.13 The bonding in CO by the Lewis and valence bond approaches -- 5.14 The bonding in carbon monoxide by MO theory -- 5.15 [CN] and [NO]þ: two ions isoelectronic with CO -- 5.16 [NO]þ, NO and [NO] -- Summary -- Problems -- 6 Polyatomic molecules: shapes -- 6.1 Introduction -- 6.2 The geometries of triatomic molecules -- 6.3 Molecules larger than triatomics described as having linear or bent geometries -- 6.4 Geometries of molecules within the p-block: the first row -- 6.5 Heavier p-block elements -- Mid-chapter problems -- 6.6 The valence-shell electron-pair repulsion (VSEPR) model -- 6.7 The VSEPR model: some ambiguities -- 6.8 The Kepert model -- 6.9 Application of the Kepert model -- 6.10 An exception to the Kepert model: the square planar geometry -- 6.11 Stereoisomerism -- 6.12 Two structures that are close in energy: the trigonal bipyramid and square-based pyramid -- 6.13 Shape and molecular dipole moments -- 6.14 Carbon: an element with only three common geometries -- Summary -- Problems -- 7 Polyatomic molecules: bonding -- 7.1 Introduction -- 7.2 Molecular shape and the octet rule: the first row elements -- 7.3 Molecular shape and the octet rule: the heavier p-block elements -- 7.4 Valence bond theory and hybridization -- 7.5 Hybridization and molecular shape -- 7.6 Hybridization: the -bonding framework -- 7.7 Hybridization: the role of unhybridized atomic orbitals -- 7.8 Molecular orbital theory and polyatomic molecules -- 7.9 How do the VB and MO pictures of the bonding in methane compare -- Summary -- Problems -- 8 Ions.
8.1 Introduction -- 8.2 Electron density maps -- 8.3 Ionization energy -- 8.4 Trends in ionization energies -- 8.5 Electron affinity -- 8.6 Electrostatic interactions between ions -- 8.7 Ionic lattices -- 8.8 The sodium chloride (rock salt) structure type -- 8.9 Determining the stoichiometry of a compound from the solid state structure: NaCl -- 8.10 The caesium chloride structure type -- 8.11 The fluorite (calcium fluoride) structure type -- 8.12 The rutile (titanium(IV) oxide) structure type -- 8.13 The structures of the polymorphs of zinc(II) sulfide -- 8.14 Sizes of ions -- 8.15 Lattice energy -- a purely ionic model -- 8.16 Lattice energy -- experimental data -- 8.17 A comparison of lattice energies determined by the Born--Lande´ equation and the Born--Haber cycle -- 8.18 Polarization of ions -- 8.19 Determining the Avogadro constant from an ionic lattice -- Summary -- Problems -- 9 Elements -- 9.1 Introduction -- 9.2 Close-packing of spheres -- 9.3 Simple cubic and body-centred cubic packing of spheres -- 9.4 A summary of the similarities and differences between close-packed and non-close-packed arrangements -- 9.5 Crystalline and amorphous solids -- 9.6 Solid state structures of the group 18 elements -- 9.7 Elemental solids containing diatomic molecules -- 9.8 Elemental molecular solids in groups 15 and 16 -- 9.9 A molecular allotrope of carbon: C60 -- 9.10 Solids with infinite covalent structures -- 9.11 The structures of metallic elements at 298K -- 9.12 Metallic radius -- 9.13 Metallic bonding -- Summary -- Problems -- 10 Mass spectrometry -- 10.1 Introduction -- 10.2 Recording a mass spectrum -- 10.3 Isotope distributions -- 10.4 Fragmentation patterns -- 10.5 Case studies -- Summary -- Problems -- 11 Introduction to spectroscopy -- 11.1 What is spectroscopy.
11.2 The relationship between the electromagnetic spectrum and spectroscopic techniques -- 11.3 Timescales -- 11.4 The Beer-Lambert Law -- 11.5 Colorimetry -- Summary -- Problems -- 12 Vibrational and rotational spectroscopies -- 12.1 Introduction -- 12.2 The vibration of a diatomic molecule -- 12.3 Infrared spectra of diatomic molecules -- 12.4 Infrared spectroscopy of triatomic molecules -- 12.5 Vibrational degrees of freedom -- 12.6 The use of IR spectroscopy as an analytical tool -- 12.7 Deuteration: the effects on IR spectroscopic absorptions -- 12.8 Rotating molecules and moments of inertia -- 12.9 Rotational spectroscopy of linear rigid rotor molecules -- Summary -- Problems -- 13 Electronic spectroscopy -- 13.1 Introduction -- 13.2 Absorption of ultraviolet and visible light -- 13.3 Electronic transitions in the vacuum-UV -- 13.4 Choosing a solvent for UV-VIS spectroscopy -- 13.5 -Conjugation -- 13.6 The visible region of the spectrum -- Summary -- Problems -- 14 NMR spectroscopy -- 14.1 Introduction -- 14.2 Nuclear spin states -- 14.3 Recording an NMR spectrum -- 14.4 Nuclei: resonance frequencies, isotope abundances and chemical shift values -- 14.5 Choosing a solvent for NMR spectroscopy -- 14.6 Molecules with one environment -- 14.7 Molecules with more than one environment -- 14.8 -- H NMR spectra: chemical environments -- 14.7 Molecules with more than one environment -- 14.8 -- H NMR spectra: chemical environments -- 14.9 Nuclear spin--spin coupling between nuclei with I¼ -- Summary -- Problems -- 15 Reaction kinetics -- 15.1 Introduction -- 15.2 Rate equations: the dependence of rate on concentration -- 15.3 Does a reaction show a zero, first or second order dependence on A -- 15.4 Rate equations for reactions with more than one reactant -- 15.5 Integrated rate equations -- 15.6 Radioactive decay.
15.7 The dependence of rate on temperature: the Arrhenius equation.
Sommario/riassunto: Chemistry provides a robust coverage of the different branches of chemistry – with unique depth in organic chemistry in an introductory text – helping students to develop a solid understanding of chemical principles, how they interconnect and how they can be applied to our lives.
Titolo autorizzato: Chemistry  Visualizza cluster
ISBN: 1-5129-4070-4
1-282-55769-6
9786612557699
0-273-73300-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910150244603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui