Vai al contenuto principale della pagina
| Autore: |
Rogers Jonathan
|
| Titolo: |
Cantilever beam design for projectile internal moving mass systems / / Jonathan Rogers and Mark Costello ; prepared by Georgia Institute of Technology
|
| Pubblicazione: | Aberdeen Proving Ground, MD : , : Army Research Laboratory, , 2010 |
| Descrizione fisica: | 1 online resource (vi, 35 pages) : illustrations |
| Soggetto topico: | Cantilevers |
| Precision guided munitions - United States | |
| Persona (resp. second.): | CostelloMark |
| Note generali: | "ARL-CR-658." |
| "September 2010." | |
| Nota di bibliografia: | Includes bibliographical references (pages 25-26). |
| Sommario/riassunto: | Internal masses that undergo controlled translation within a projectile have been shown to be effective control mechanisms for smart weapons. However, internal mass oscillation must occur at the projectile roll frequency to generate sufficient control force. This can lead to high power requirements and place a heavy burden on designers attempting to allocate volume within the projectile for internal mass actuators and power supplies. The work reported here outlines a conceptual design for an internal translating mass system using a cantilever beam and electromagnetic actuators. The cantilever beam acts as the moving mass, vibrating at the projectile roll frequency to generate control force. First, a dynamic model is developed to describe the system. Then, the natural frequency, damping ratio, and length of the beam are varied to study their effects on force required and total battery size. Trade studies also examine the effect on force required and total battery size of a roll-rate feedback system that actively changes beam elastic properties. Results show that with proper sizing and specifications, the cantilever beam control mechanism requires relatively small batteries and low actuator control forces, with minimum actuator complexity and space requirements. |
| Titolo autorizzato: | Cantilever beam design for projectile internal moving mass systems ![]() |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910705799903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |