Vai al contenuto principale della pagina
| Titolo: |
Brauer Groups and Obstruction Problems : Moduli Spaces and Arithmetic / / edited by Asher Auel, Brendan Hassett, Anthony Várilly-Alvarado, Bianca Viray
|
| Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2017 |
| Edizione: | 1st ed. 2017. |
| Descrizione fisica: | 1 online resource (IX, 247 p.) |
| Disciplina: | 512.2 |
| Soggetto topico: | Geometry, Algebraic |
| Number theory | |
| Algebraic Geometry | |
| Number Theory | |
| Persona (resp. second.): | AuelAsher |
| HassettBrendan | |
| Várilly-AlvaradoAnthony | |
| VirayBianca | |
| Nota di bibliografia: | Includes bibliographical references at the end of each chapters. |
| Nota di contenuto: | The Brauer group is not a derived invariant -- Twisted derived equivalences for affine schemes -- Rational points on twisted K3 surfaces and derived equivalences -- Universal unramified cohomology of cubic fourfolds containing a plane -- Universal spaces for unramified Galois cohomology -- Rational points on K3 surfaces and derived equivalence -- Unramified Brauer classes on cyclic covers of the projective plane -- Arithmetically Cohen-Macaulay bundles on cubic fourfolds containing a plane -- Brauer groups on K3 surfaces and arithmetic applications -- On a local-global principle for H3 of function fields of surfaces over a finite field -- Cohomology and the Brauer group of double covers. |
| Sommario/riassunto: | The contributions in this book explore various contexts in which the derived category of coherent sheaves on a variety determines some of its arithmetic. This setting provides new geometric tools for interpreting elements of the Brauer group. With a view towards future arithmetic applications, the book extends a number of powerful tools for analyzing rational points on elliptic curves, e.g., isogenies among curves, torsion points, modular curves, and the resulting descent techniques, as well as higher-dimensional varieties like K3 surfaces. Inspired by the rapid recent advances in our understanding of K3 surfaces, the book is intended to foster cross-pollination between the fields of complex algebraic geometry and number theory. Contributors: · Nicolas Addington · Benjamin Antieau · Kenneth Ascher · Asher Auel · Fedor Bogomolov · Jean-Louis Colliot-Thélène · Krishna Dasaratha · Brendan Hassett · Colin Ingalls · Martí Lahoz · Emanuele Macrì · Kelly McKinnie · Andrew Obus · Ekin Ozman · Raman Parimala · Alexander Perry · Alena Pirutka · Justin Sawon · Alexei N. Skorobogatov · Paolo Stellari · Sho Tanimoto · Hugh Thomas · Yuri Tschinkel · Anthony Várilly-Alvarado · Bianca Viray · Rong Zhou. |
| Titolo autorizzato: | Brauer Groups and Obstruction Problems ![]() |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910254288603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |