Vai al contenuto principale della pagina
| Autore: |
Sharma Narendra K
|
| Titolo: |
Bio-Nanomaterials in Environmental Remediation : Industrial Applications
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (350 pages) |
| Altri autori: |
SharmaRekha
DakalTikam C
|
| Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- Brief Biography of Editors -- Preface -- Chapter 1 Bio‐nanomaterials: An Introduction -- 1.1 Introduction -- 1.2 Types of Bio‐nanomaterials -- 1.2.1 Classification of Biological Nanoparticles -- 1.2.1.1 Proteins -- 1.2.1.2 Nucleic Acid -- 1.2.1.3 Lipids -- 1.2.1.4 Polysaccharides -- 1.2.2 Derived Bio‐nanomaterials -- 1.2.2.1 Green Synthesized Nanoparticles -- 1.2.2.2 Nanosize‐Derived Component -- 1.3 Integration of Nanoparticles and Biomolecules -- 1.3.1 Different Processes of Synthesis of Nanoparticles and Biomolecules Integration -- 1.3.1.1 Conjugation via Noncovalent Interactions -- 1.3.1.2 Conjugation via Covalent Interactions -- 1.3.2 Organic-Organic Nanoparticle complexes -- 1.3.3 Biomolecule-Polymer Nanoparticle Complexes -- 1.3.4 Organic-Inorganic Complex -- 1.3.5 Self‐Assembled Biomolecule-Nanoparticle Complex -- 1.4 Application of Bio‐nanomaterials -- 1.4.1 Clinical Application -- 1.4.1.1 Drug Delivery System -- 1.4.1.2 Lipid‐Based Approved Nanopharmaceuticals -- 1.4.1.3 Protein‐Based Approved Nanopharmaceuticals -- 1.4.2 Clinical Diagnosis and Bioelectronics -- 1.4.2.1 Regenerative medicine -- 1.4.2.2 Nanopeptides as Diagnostics -- 1.4.3 Food Industry -- 1.4.4 Utilities of Bio‐nanomaterials for Environment Remediation -- 1.4.4.1 Role of Bio‐nanomaterials in Water Remediation -- 1.5 Advantages of Bio‐nanomaterials -- 1.5.1 Enhanced Adsorption Capacities -- 1.5.2 Potential for Microbial Synergy -- 1.5.3 Sustainable Sourcing and Production -- 1.5.3.1 Environment‐Friendly Production Methods -- 1.6 Current Challenges and Future Prospects -- 1.6.1 Toxicological Concerns -- 1.6.2 Scalability and Commercial Viability -- 1.7 Future Perspectives -- 1.8 Conclusion -- References -- Chapter 2 Classification and Applications of Bio‐nanomaterials -- 2.1 Introduction -- 2.2 Etymology of Nanotechnology. |
| 2.3 Why Bio‐nanomaterials Are Required? -- 2.4 Categories of Bio‐nanomaterials -- 2.5 Classification of Bio‐nanomaterials -- 2.5.1 Organic Nanoparticles -- 2.5.2 Carbon‐Based Bio‐nanomaterials -- 2.5.3 Inorganic Bio‐nanoparticles -- 2.5.4 Polymeric Nanomaterials -- 2.6 Application of Bio‐nanomaterials -- 2.6.1 Drug Delivery Systems -- 2.6.2 Biomedical Imaging -- 2.6.3 Cancer Diagnosis and Therapy -- 2.6.4 Tissue Engineering -- 2.6.5 Environmental Remediation -- 2.6.6 Biocatalysis -- 2.6.7 Sensing and Detection -- 2.6.8 Smart Materials -- 2.6.9 Food and Agriculture -- 2.7 Toxicity of NPs and Nanomaterials -- 2.8 Conclusion -- References -- Chapter 3 Technologies for the Fabrication of Bio‐nanomaterials -- 3.1 Introduction -- 3.2 Bio‐nanomaterial Types -- 3.2.1 Natural Bio‐nanoparticles -- 3.2.2 Inorganic Nanomaterials -- 3.2.3 Blended Bio‐nanocomposites -- 3.3 Technologies for the Fabrication of Bio‐nanomaterials -- 3.3.1 Self‐assembly -- 3.3.2 MBE or Molecular Beam Epitaxy -- 3.3.3 Fabrication of Biomimetic Surface‐Engineered Nanomaterials -- 3.3.3.1 A Single‐Step Approach -- 3.3.3.2 A Two‐Step Approach -- 3.3.3.3 Long Circulation of Stealth‐Mimetic Copolymer‐Coated Nanomaterials -- 3.3.4 DNA Origami -- 3.3.5 3D‐Bioprinting -- 3.3.6 Lithography -- 3.3.7 Methods of Etching -- 3.3.8 Methods of Templating -- 3.3.9 Fabrication Procedures: Strategy Using the Real Cell Membrane -- 3.3.9.1 Preparation of Membranes and Core NPs -- 3.3.9.2 Cell Membrane Coating Approaches -- 3.4 Microorganisms as Instruments for Nanofabrication -- 3.4.1 Biofabrication of Nanoparticles Using Fungi -- 3.4.2 Biofabrication of Nanoparticles Using Mangrove Bacteria -- 3.4.2.1 Mechanism Pathway of Bacterially Synthesized Nanoparticles Through the Mangrove Environment -- 3.5 Synthesis Mediated by Plants -- 3.5.1 Synthesis of Metal Nanoparticles from Mangrove Plants. | |
| 3.6 Production of Bio‐nanomaterials via Enzymatic Process -- 3.7 Cellular Nanotechnology -- 3.8 Peptide Self‐assembly -- 3.9 Liposome Technology -- 3.10 Bio‐nanomaterial Applications -- 3.10.1 Medical Bio‐nanomaterials -- 3.10.2 Bio‐nanomaterials' Environmental Applications -- 3.10.3 Utilizing Bio‐nanomaterials in Industrial Applications -- 3.11 Issues and Prospects for the Future -- 3.11.1 Enhancements in Bio‐nanomaterials' Functionalities -- 3.11.2 Theranostic Methods in Medical Practice -- 3.11.3 Substances for Brain-Computer Interfaces -- 3.11.4 Techniques of Environmental Nanoremediation -- 3.11.5 Prospects for Growth and Ethical Issues -- 3.11.6 Medical Regenerative Materials Using Bio‐nanomaterials -- 3.12 Conclusion -- References -- Chapter 4 Desalination of Wastewater Using Bio‐nanomaterials -- 4.1 Introduction -- 4.2 Desalination Tactics -- 4.3 Cursory Analysis of Traditional Desalination Techniques -- 4.3.1 Reverse Osmosis -- 4.3.2 Electrodialysis Reversal -- 4.3.3 Solar Desalination -- 4.3.3.1 Decoupled Solar Distillation -- 4.3.3.2 Solar Stills -- 4.3.3.3 Plasmonic -- 4.3.3.4 Concentrated Solar Stills -- 4.3.3.5 Seawater Greenhouse -- 4.3.4 Gas Hydrate Formation -- 4.4 Limitations of Traditional Desalination Methods -- 4.4.1 Excess Energy Consumption -- 4.4.2 Cost Considerations -- 4.4.3 Environmental Impact -- 4.4.4 Water Quality Concern -- 4.5 Emergence of Bio‐nanomaterials -- 4.5.1 Significance of Bio‐nanomaterials in Water Treatment -- 4.5.2 Nanomaterials as Adsorbents -- 4.5.3 Nanomaterials as Photocatalysts -- 4.5.4 Nanomaterials as Antibacterial Agents -- 4.6 Miscellaneous Use of Nano‐biomaterials -- 4.6.1 Bioremediation of Microplastics -- 4.6.2 Bio‐nanomaterials for Green Bio‐nanotechnology -- 4.6.3 Bio‐nanomaterial‐Mediated Seed Priming for Sustainable Agricultural Production. | |
| 4.6.4 Bio‐nanomaterial‐Based Electrochemical Biosensing Platforms for Biomedical Applications -- 4.6.5 Bio‐nanomaterials for Versatile Biomolecules Detection Technology -- 4.7 Properties of Bio‐nanomaterials and Their Role in Desalination -- 4.7.1 Nano‐sorbents -- 4.7.2 Nanofiltration -- 4.8 Bio‐nanomaterials for Wastewater Desalination -- 4.8.1 Membranes Based on Graphene for Water Purification -- 4.8.2 Graphene and Graphene Oxide -- 4.8.3 The Mechanism of Transport for Small Molecules in (GO‐based membranes) GOMs -- 4.9 CNT Membranes for the Removal of Salt -- 4.10 Carbon Nanotube‐Based Purification -- 4.11 Mechanisms and Influence Factors for Desalination -- 4.12 The Properties of Carbon Nanotubes Impacting Water Flow Rate -- 4.12.1 The CNTs' Diameter -- 4.12.2 The CNTs' Length -- 4.13 Environmental Impact and Sustainability -- 4.14 Future Aspects -- 4.15 Conclusion -- References -- Chapter 5 Industrial Applications of Bio‐nanomaterials in Textiles -- 5.1 Introduction -- 5.2 General Processes in the Textile Industry -- 5.3 Conventional Textile Fibers -- 5.4 Biomaterials for the Textile Industry -- 5.4.1 Chitin and Chitosan -- 5.4.2 Applications of Chitin and Chitosan -- 5.4.2.1 Antimicrobial Property -- 5.4.2.2 Antiodor Activity -- 5.4.2.3 Other Related Applications -- 5.4.3 Cellulose -- 5.4.3.1 Dye Removal Applications -- 5.4.3.2 Release of Fragrance -- 5.4.3.3 Hydrophilicity and Hydrophobicity -- 5.5 Conclusion -- References -- Chapter 6 Industrial Application of Bio‐nanomaterials in Oil Industry -- 6.1 Introduction -- 6.2 Characterization of Bio‐nanomaterials -- 6.2.1 Scanning Electron Microscopy -- 6.2.2 Transmission Electron Microscopy -- 6.2.3 Atomic Force Microscopy -- 6.2.4 Dynamic Light Scattering -- 6.2.5 X‐Ray Diffraction -- 6.2.6 Fourier Transform Infrared Spectroscopy -- 6.2.7 UV/Vis Spectroscopy. | |
| 6.3 Nanomaterials for Oil and Petrochemical Industries -- 6.3.1 Pollutant Tracer -- 6.3.2 Drilling and Completion Process -- 6.3.3 Corrosion Prevention in Pipes -- 6.3.4 Biorefinery Catalysts -- 6.4 Separation Techniques -- 6.5 Nanomaterials for the Oil and Gas Industry -- 6.6 Upstream Process -- 6.6.1 Drilling Process -- 6.6.2 Midstream Process (Oil Transfer Process) -- 6.6.3 Downstream Process (Demulsification Performance) -- 6.7 Role of Bio‐nanomaterials in Oil Recovery -- 6.7.1 Enhanced Oil Recovery (EOR) Techniques -- 6.8 Catalytic Properties -- 6.9 Conclusions and Future Prospectus -- References -- Chapter 7 Applications of Nanotechnology and Nanomaterials in Gas Industry -- 7.1 Introduction -- 7.2 Why Nanotechnology in Gas Industries? -- 7.3 Applications of Different Nanomaterials -- 7.3.1 Catalysis -- 7.3.2 Nanomembranes -- 7.3.3 Drilling Operations -- 7.3.4 Enhanced Gas Recovery -- 7.3.5 Corrosion Control -- 7.3.6 Cementing and Well Stimulation -- 7.3.7 Exploration and Production -- 7.3.8 Transportation and Refining -- 7.4 Different Types of Nanomaterials Used in Gas Industries -- 7.4.1 Carbon Nanomaterials -- 7.4.2 Metallic and Metal Oxide Nanoparticles -- 7.4.3 Magnetic Nanoparticles -- 7.4.4 Nanosilica and Nanocellulose -- 7.4.5 Nanocomposites -- 7.4.6 Nanofluids -- 7.4.7 Nanoemulsions -- 7.4.8 Cellulose Nanomaterials -- 7.5 Challenges of Nanomaterials Used in Gas Industries -- 7.5.1 Scale‐up and Production -- 7.5.2 Regulatory Hurdles -- 7.5.3 Nanotoxicity -- 7.5.4 Characterization and Quality Control -- 7.5.5 Implication on Health, Safety, and Environment -- 7.5.6 Durability and Stability -- 7.5.7 Compatibility and Integration -- 7.6 Future Prospects of Nanotechnology and Nanomaterials in Gas Industries -- 7.7 Conclusion -- References -- Chapter 8 Industrial Application of Bio‐nanomaterial in Food Industry -- 8.1 Introduction. | |
| 8.2 Nanomaterials in Food Packaging. | |
| Titolo autorizzato: | Bio-Nanomaterials in Environmental Remediation ![]() |
| ISBN: | 9783527848522 |
| 3527848525 | |
| 9783527848546 | |
| 3527848541 | |
| 9783527848539 | |
| 3527848533 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910917798603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |