Vai al contenuto principale della pagina

Beton-Kalender 2024 : Schwerpunkte: Digitales Planen und Baurobotik; Hochbau (2 Teile)



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Bergmeister Konrad Visualizza persona
Titolo: Beton-Kalender 2024 : Schwerpunkte: Digitales Planen und Baurobotik; Hochbau (2 Teile) Visualizza cluster
Pubblicazione: Newark : , : Wilhelm Ernst & Sohn Verlag fur Architektur und Technische, , 2023
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (907 pages)
Soggetto topico: Building information modeling
Sustainable buildings
Altri autori: FingerloosFrank  
WörnerJohann Dietrich  
Nota di contenuto: Cover -- Vorwort -- Inhaltsübersicht -- Inhaltsverzeichnis -- Autor:innenverzeichnis -- I Beton -- 1 Einführung und Definition -- 1.1 Allgemeines -- 1.2 Definition -- 1.3 Klassifizierung von Beton -- 2 Ausgangsstoffe -- 2.1 Zement -- 2.2 Gesteinskörnungen für Beton -- 2.3 Betonzusatzmittel -- 2.4 Betonzusatzstoffe -- 2.5 Zugabewasser -- 3 Frischbeton und Nachbehandlung -- 3.1 Allgemeine Anforderungen -- 3.2 Mehlkorngehalt -- 3.3 Rohdichte und Luftgehalt -- 3.4 Verarbeitbarkeit und Konsistenz -- 3.5 Transport und Einbau -- 3.6 Entmischen -- 3.7 Nachbehandlung -- 4 Junger Beton -- 4.1 Bedeutung und Definition -- 4.2 Hydratationswärme -- 4.3 Verformungen -- 4.4 Dehnfähigkeit und Rissneigung -- 4.5 Bestimmung der Festigkeit von jungem Beton -- 5 Lastunabhängige Verformungen -- 5.1 Allgemeines -- 5.2 Temperaturdehnung -- 5.3 Schwinden -- 6 Festigkeit und Verformung von Festbeton -- 6.1 Strukturmerkmale -- 6.2 Druckfestigkeit -- 6.3 Zugfestigkeit -- 6.4 Festigkeit bei mehrachsiger Beanspruchung -- 6.5 Spannungs-Dehnungsbeziehungen -- 6.6 Einfluss der Zeit auf Festigkeit und Verformung -- 7 Dauerhaftigkeit -- 7.1 Überblick über die Umweltbedingungen, Schädigungsmechanismen und Mindestanforderungen -- 7.2 Widerstand gegen das Eindringen aggressiver Stoffe -- 7.3 Korrosionsschutz der Bewehrung im Beton -- 7.4 Frostwiderstand und Frost-Taumittel-Widerstand -- 7.5 Widerstand gegen chemische Angriffe -- 7.6 Verschleißwiderstand -- 7.7 Feuchtigkeitsklassen nach DAfStb-Alkali-Richtlinie -- 8 Selbstverdichtender Beton -- 8.1 Allgemeines -- 8.2 Mischungsentwurf -- 8.3 Frischbetonprüfverfahren an Mörtel -- 8.4 Prüfungen am Beton -- 8.5 Eigenschaften -- 9 Sichtbeton -- 9.1 Einführung -- 9.2 Planung und Ausschreibung -- 9.3 Betonzusammensetzung und Betonherstellung -- 9.4 Einbau und Nachbehandlung -- 9.5 Beurteilung -- 9.6 Mängel und Mängelbeseitigung.
9.7 Sonder-Sichtbetone -- 10 Leichtbeton -- 10.1 Einführung und Überblick -- 10.2 Konstruktionsleichtbeton nach DIN EN 1992-1-1 -- 10.3 Porenbeton -- 10.4 Haufwerksporiger Leichtbeton -- 11 Faserbeton -- 11.1 Allgemeines -- 11.2 Zusammenwirken von Fasern und Matrix -- 11.3 Fasern -- 11.4 Zusammensetzung -- 11.5 Eigenschaften -- 11.6 Normen und Grundlagen -- 12 Ultrahochfester Beton -- 13 Carbonbeton -- 14 Betone unter Verwendung von Geopolymeren und alkalisch-aktivierten Bindemitteln -- 15 Nachhaltigkeit im Betonbau -- 15.1 Einführung -- 15.2 Nachhaltigkeitsbewertung -- 15.3 Klinkereffiziente Zemente -- 15.4 Ökobetone -- 15.5 Neue Bindemittel -- 16 Betonrecycling -- 16.1 Allgemeines -- 16.2 Rezyklierte Gesteinskörnungen aus Betonbruch -- 16.3 Betonbrechsande als Bindemittelkomponente -- 16.4 Frischbetonrecycling -- 17 Numerische Simulation des Betonverhaltens -- 18 Normative Entwicklungen und neue Richtlinien -- 18.1 Die neue Normenreihe DIN 1045 - Weiterentwicklung der Betonbauqualität (BBQ) -- 18.2 Dauerhaftigkeitskonzept im neuen Eurocode 2 - Expositions-Widerstandsklassen -- 18.3 Neue DAfStb-Richtlinien -- II Klima- und ressourcenschonendes Bauen mit Beton -- 1 Einführung -- 2 Ressourcenverbrauch, Abfallaufkommen und Ansätze zur Kreislaufwirtschaft -- 2.1 Einleitung -- 2.2 Sachstand -- 2.3 Ressourcenverbrauch international in Hinblick auf Verfügbarkeit von Sand, Kies -- 2.4 Abfallaufkommen -- 2.5 Recycling -- 2.6 Tunnelausbruchmaterial in der Kreislaufwirtschaft -- 3 Potenziale zur Klima- und Ressourcenschonung im Bauwesen -- 3.1 Einleitung -- 3.2 Effiziente Strukturen und Prozesse -- 3.3 Optimierung von Entwurf, Tragwerk und Bauteilen -- 3.4 Bedarfsgerechter Einsatz von Baumaterialien -- 3.5 Bestandserhalt durch Um- und Weiternutzung -- 3.6 Verlängerung der Nutzungsdauer -- 3.7 Überlegungen zu einem Grenzzustand der Ressourcenverträglichkeit.
3.8 Fokussierung der Forschung und Lehre -- 4 Rechtliche und normative Grundlagen für Recyclingbeton in DACH -- 4.1 Gesetzliche Grundlagen -- 4.2 Normen und Richtlinien -- 5 Zusammensetzung und Aufbereitung von rezyklierter Gesteinskörnung -- 5.1 Allgemeines -- 5.2 Abbruch und Rückbau von Bauwerken -- 5.3 Aufbereitung von Abbruchmaterial -- 6 Umwelt- und ressourceneffiziente Betone -- 6.1 Grundsätze zur Herstellung umwelt- und ressourceneffizienter Betone -- 6.2 Anforderungen an klima- und ressourcenschonende Betone -- 6.3 Potenziale für eine klima- und ressourcenschonende Betonindustrie und ihre Wirkung -- 6.4 CO2 und Ressourcenschutz im Transportbetonwerk - Beispiel Deutschland -- 6.5 Klima- und Ressourcenoptimierung durch digitale Produktionsregelungsmethoden -- 7 Recycling und Kreislaufwirtschaft bei Bewehrungsmaterialien -- 7.1 Einführung -- 7.2 Abbruch und Trennung -- 7.3 Recycling von Stahlbewehrung -- 7.4 Recycling von nichtmetallischer Bewehrung -- 8 Hemmnisse für nachhaltiges Bauen sowie Lösungsansätze -- 8.1 Ökobilanzierung - Grundlagen und offene Fragen -- 8.2 Analyse aktueller Hemmnisse -- 8.3 Lösungsansätze zur Reduktion der Hemmnisse -- 9 Schlussfolgerungen - „Update des Betriebssystems" Bauen -- 9.1 Helfen Digitalisierung und Automatisierung beim klima- und ressourceneffizienten Planen und Bauen? -- 9.2 Brauchen wir zur Erzielung der Klima- und Ressourceneffizienz neue Formen der Projektabwicklung? -- 9.3 Wie kann die Nutzungsdauer des Gebäudebestandes maximiert werden? -- 9.4 Wie gelingt über zielgerichtete Forschung und zeitgemäße Lehre ein schneller Wissenstransfer? -- 9.5 Kann ein Nachweis zur Klimaverträglichkeit hilfreich sein? -- 9.6 Führen geänderte Anreizstrukturen zu effizienterer Planung? -- III Hochhausbau in der Praxis -- 1 Allgemeines -- 1.1 Einführung -- 1.2 Kontext -- 1.3 Literatur -- 1.4 Warum hoch hinaus?.
1.5 Architektur und Gestaltung -- 1.6 Ingenieuraufgabe Hochhaus -- 2 Lastannahmen -- 2.1 Vertikale Lasten und Imperfektion -- 2.2 Windlasten und windinduzierte Bauwerksreaktionen -- 2.3 Erdbeben -- 3 Tragwerk -- 3.1 Entwurfskriterien -- 3.2 Berechnungsmethoden -- 3.3 Decken -- 3.4 Stützen -- 3.5 Wände -- 3.6 Tragsysteme Aussteifung -- 3.7 Gründung -- 4 Schnittstellen zum Tragwerk -- 4.1 Fassade -- 4.2 Ausbau -- 4.3 Toleranzen -- 4.4 Stützenstauchung -- 4.5 Setzungen -- 4.6 Interstory-Drift -- 4.7 Zusammenfassung -- 5 Ausführung -- 5.1 Baulogistik -- 5.2 Geschosstakt -- 5.3 Betontechnologien -- 5.4 Schalungstechniken -- 5.5 Vermessungstechnik -- 6 Ausblick, neue Technologien -- 6.1 Nachhaltigkeit im Fokus -- 6.2 Hybride Konstruktionen -- IV Nachhaltige Gründungen im Hoch- und Ingenieurbau - die Kombinierte Pfahl-Plattengründung (KPP) als wirksames Instrumentarium zur CO2-Reduktion -- 1 Einleitung -- 2 Grundlagen -- 2.1 Baugrund-Tragwerk-Interaktion -- 2.2 Baugrunderkundung gemäß DIN EN 1997 -- 2.3 Vier-Augen-Prinzip -- 2.4 Beobachtungsmethode -- 3 Kombinierte Pfahl-Plattengründung -- 3.1 Trag- und Verformungsverhalten -- 3.2 Tiefgründungselemente -- 3.3 Herstellung von Tiefgründungselementen -- 3.4 Berechnungsmethoden -- 3.5 Geotechnische Nachweisführung -- 3.6 KPP-Richtlinie -- 3.7 Messtechnische Überwachung einer KPP -- 3.8 Gewährleistung der Sicherheit, Qualität und Nachhaltigkeit -- 4 Geothermisch aktivierte Gründungssysteme -- 4.1 Physikalische Grundlagen -- 4.2 Massivabsorber -- 4.3 Dimensionierung und Nachweisführung -- 4.4 Herstellung und konstruktive Durchbildung -- 4.5 Energiepfahlanlage eines innerstädtischen Großbauprojekts -- 5 Wiedernutzung von Bestandsgründungen -- 5.1 Zielstellung der Wiedernutzung -- 5.2 Geotechnische Nachweisführung -- 5.3 Notwendige Untersuchungen.
5.4 Wiedernutzung bestehender Gründungen - Beispiele aus der Ingenieurpraxis -- 6 Beispiele -- 6.1 Hochhausgründung im Standardfall -- 6.2 KPP in nichtbindigem Baugrund -- 6.3 KPP in setzungsaktivem, bindigem Baugrund -- 6.4 KPP mit exzentrischer Belastung -- 6.5 KPP in Kombination mit Deckelbauweise -- 6.6 Hochhausgründung neben S-Bahn-Tunnel in setzungsaktivem Baugrund -- 6.7 Spezialgründung auf der Rheintalgrabenrandverwerfung -- 6.8 Hochhausgründung in Hanglage -- 6.9 Horizontal belastete KPP -- 6.10 CO2-Reduktion durch den Einsatz von Kombinierten Pfahl-Plattengründungen (KPP) -- V Nachträglich eingemörtelte Bewehrungsstäbe -- 1 Einleitung -- 2 Verankerungsmörtel -- 2.1 Allgemeines -- 2.2 Bestandteile -- 2.3 Montage der nachträglich zu setzenden Bewehrungsstäbe -- 3 Tragverhalten -- 4 Lasteinleitung -- 5 Anwendungsbereiche -- 5.1 Allgemeines -- 5.2 Statische Gesichtspunkte -- 6 Vorschriften -- 6.1 Allgemeines -- 6.2 Vorschriften für die Bewertung/Qualifizierung von Verankerungsmörteln -- 6.3 Vorschriften für die Bemessung von nachträglich eingemörtelten Bewehrungsstäben -- 6.4 Vorschriften für die Montage von nachträglich eingemörtelten Bewehrungsstäben -- 7 Auswahl des Verankerungsmörtels -- VI Tragende wärme- und schallgedämmte Bauteilanschlüsse und Querkraftdorne -- 1 Einleitung -- 2 Anschlüsse mit Wärmedämmung - Platten -- 2.1 Anwendungsbereich -- 2.2 Konstruktive Durchbildung -- 2.3 Statische Nachweise -- 2.4 Nachweise der Gebrauchstauglichkeit -- 2.5 Brandschutz -- 2.6 Schwingungen, Erdbeben -- 2.7 Wärmeschutz -- 2.8 Trittschallschutz -- 2.9 Produkte der Hersteller/Anbieter -- 3 Anschlüsse mit Wärmedämmung - Stützen und Wände -- 3.1 Allgemeines -- 3.2 Wärmedämmende Stützenanschlüsse -- 3.3 Wärmedämmende Wandanschlüsse -- 4 Treppenanschlüsse -- 4.1 Allgemeines/Anwendungsbereich -- 4.2 Trittschallschutz -- 4.3 Brandschutz.
4.4 Anschlussvarianten.
Sommario/riassunto: This book focuses on innovative trends and practical experiences in digital planning and construction robotics, emphasizing the latest advancements in concrete technology and sustainable building practices. It addresses topics such as the use of recycled aggregates, carbon concrete, and geopolymers, along with the implications of new European standards. The text explores high-rise construction techniques, the integration of digital tools like Building Information Modeling (BIM), and the role of artificial intelligence in early design phases. Additionally, it discusses sustainable building foundations and the importance of extending building lifecycles through structural health monitoring. Intended for professionals and researchers in civil engineering and construction, the book provides comprehensive insights into modern engineering challenges and solutions.
Titolo autorizzato: Beton-Kalender 2024  Visualizza cluster
ISBN: 9783433611500
3433611505
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Tedesco
Record Nr.: 9911018968203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Beton-Kalender Series