Vai al contenuto principale della pagina

Basic Geometry of Voting / / by Donald G. Saari



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Saari D (Donald) Visualizza persona
Titolo: Basic Geometry of Voting / / by Donald G. Saari Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1995
Edizione: 1st ed. 1995.
Descrizione fisica: 1 online resource (XII, 300 p.)
Disciplina: 324/.01/516
Soggetto topico: Operations research
Econometrics
Operations Research and Decision Theory
Quantitative Economics
Note generali: "With 102 Figures."
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: I. From an Election Fable to Election Procedures -- 1.1 An Electoral Fable -- 1.2 The Moral of the Tale -- 1.3 From Aristotle to “Fast Eddie” -- 1.4 What Kind of Geometry? -- II. Geometry for Positional And Pairwise Voting -- 2.1 Ranking Regions -- 2.2 Profiles and Election Mappings -- III. The Problem With Condorcet -- 3.1 Why Can’t an Organization Be More Like a Person? -- 3.2 Geometry of Pairwise Voting -- 3.3 Black’s Single-Peakedness -- 3.4 Arrow’s Theorem -- IV. Positional Voting And the BC -- 4.1 Positional Voting Methods -- 4.2 What a Difference a Procedure Makes; Several Different Outcomes -- 4.3 Positional Versus Pairwise Voting -- 4.4 Profile Decomposition -- 4.5 From Aggregating Pairwise Votes to the Borda Count -- 4.6 The Other Positional Voting Methods -- 4.7 Multiple Voting Schemes -- 4.8 Other Election Procedures -- V. Other Voting Issues -- 5.1 Weak Consistency: The Sum of the Parts -- 5.2 From Involvement and Monotonicity to Manipulation -- 5.3 Gibbard-Satterthwaite and Manipulable Procedures -- 5.4 Proportional Representation -- 5.5 House Monotone Methods -- VI. Notes -- VII. References.
Sommario/riassunto: A surprise is how the complexities of voting theory can be explained and resolved with the comfortable geometry of our three-dimensional world. This book is directed toward students and others wishing to learn about voting, experts will discover previously unpublished results. As an example, a new profile decomposition quickly resolves two centuries old controversies of Condorcet and Borda, demonstrates, that the rankings of pairwise and other methods differ because they rely on different information, casts series doubt on the reliability of a Condorcet winner as a standard for the field, makes the famous Arrow`s Theorem predictable, and simplifies the construction of examples. The geometry unifies seemingly disparate topics as manipulation, monotonicity, and even the apportionment issues of the US Supreme Court.
Titolo autorizzato: Basic geometry of voting  Visualizza cluster
ISBN: 3-642-57748-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910954468203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui