Vai al contenuto principale della pagina

Automatic Ambiguity Resolution in Natural Language Processing [[electronic resource] ] : An Empirical Approach / / by Alexander Franz



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Franz Alexander Visualizza persona
Titolo: Automatic Ambiguity Resolution in Natural Language Processing [[electronic resource] ] : An Empirical Approach / / by Alexander Franz Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1996
Edizione: 1st ed. 1996.
Descrizione fisica: 1 online resource (XX, 164 p.)
Disciplina: 006.3/5
Soggetto topico: Artificial intelligence
Computer simulation
Mathematical logic
Statistics 
Artificial Intelligence
Simulation and Modeling
Mathematical Logic and Formal Languages
Statistics for Social Sciences, Humanities, Law
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di contenuto: Previous work on syntactic ambiguity resolution -- Loglinear models for ambiguity resolution -- Modeling new words -- Part-of-speech ambiguity -- Prepositional phrase attachment disambiguation -- Conclusions.
Sommario/riassunto: This is an exciting time for Artificial Intelligence, and for Natural Language Processing in particular. Over the last five years or so, a newly revived spirit has gained prominence that promises to revitalize the whole field: the spirit of empiricism. This book introduces a new approach to the important NLP issue of automatic ambiguity resolution, based on statistical models of text. This approach is compared with previous work and proved to yield higher accuracy for natural language analysis. An effective implementation strategy is also described, which is directly useful for natural language analysis. The book is noteworthy for demonstrating a new empirical approach to NLP; it is essential reading for researchers in natural language processing or computational linguistics.
Titolo autorizzato: Automatic Ambiguity Resolution in Natural Language Processing  Visualizza cluster
ISBN: 3-540-49593-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996465981003316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Artificial Intelligence ; ; 1171