Vai al contenuto principale della pagina

Archiving strategies for evolutionary multi-objective optimization algorithms / / Oliver Schütze, Carlos Hernández



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Schütze Oliver Visualizza persona
Titolo: Archiving strategies for evolutionary multi-objective optimization algorithms / / Oliver Schütze, Carlos Hernández Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2021]
©2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (XIII, 234 p. 130 illus., 44 illus. in color.)
Disciplina: 005.1
Soggetto topico: Computer algorithms
Persona (resp. second.): HernandezCarlos
Nota di contenuto: Introduction -- Multi-objective Optimization -- The Framework -- Computing the Entire Pareto Front -- Computing Gap Free Pareto Fronts -- Using Archivers within MOEAs -- Test Problems.
Sommario/riassunto: This book presents an overview of archiving strategies developed over the last years by the authors that deal with suitable approximations of the sets of optimal and nearly optimal solutions of multi-objective optimization problems by means of stochastic search algorithms. All presented archivers are analyzed with respect to the approximation qualities of the limit archives that they generate and the upper bounds of the archive sizes. The convergence analysis will be done using a very broad framework that involves all existing stochastic search algorithms and that will only use minimal assumptions on the process to generate new candidate solutions. All of the presented archivers can effortlessly be coupled with any set-based multi-objective search algorithm such as multi-objective evolutionary algorithms, and the resulting hybrid method takes over the convergence properties of the chosen archiver. This book hence targets at all algorithm designers and practitioners in the field of multi-objective optimization.
Titolo autorizzato: Archiving strategies for evolutionary multi-objective optimization algorithms  Visualizza cluster
ISBN: 3-030-63773-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910484979003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Studies in computational intelligence ; ; Volume 938.