Vai al contenuto principale della pagina

Applications of Biotribology in Biomedical Systems



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kumar Abhishek Visualizza persona
Titolo: Applications of Biotribology in Biomedical Systems Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing AG, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (462 pages)
Altri autori: KumarAvinash  
KumarAshwani  
Nota di contenuto: Intro -- Aim and Scope -- Preface -- Acknowledgments -- Contents -- Contributors -- About the Editors -- Chapter 1: Introduction to Biotribology: A Science of Surface Interaction -- 1.1 Introduction -- 1.2 Fundamentals and Principles of Biotribology -- 1.2.1 Friction -- 1.2.1.1 Friction Under Dry and Unlubricated Conditions -- 1.2.1.2 Static Friction and Kinetic Friction -- 1.2.1.3 Friction Under Lubricated Conditions -- 1.2.2 Key Principles of Biotribology -- 1.3 Forces in Nature -- 1.4 Principles of Adhesion and Cohesion -- 1.5 Contact Mechanics in Biotribology -- 1.6 Biological Aspects in Biotribology -- 1.7 Recent Advancements in Biotribology -- 1.7.1 Joint Tribology -- 1.7.2 Skin Tribology -- 1.7.3 Oral Tribology -- 1.7.4 Effect of Environment and Surface Finish -- 1.8 Summary -- References -- Chapter 2: Characterization of Hydrogel Properties in the Advancement of Bio-Tribology -- 2.1 Introduction -- 2.2 Tribological Properties of Articular Cartilage -- 2.3 Lubrication Mechanism of Articular Cartilage -- 2.3.1 Fluid Pressurization/Fluid-Film Lubrication -- 2.3.2 Boundary Lubrication -- 2.3.3 Hydrodynamic Lubrication -- 2.3.4 Squeeze-Film Lubrication -- 2.3.5 Synovial Fluid -- 2.3.6 Hydration Lubrication -- 2.4 Cartilage Mechanical and Surface Properties -- 2.4.1 The Friction of Articular Cartilage -- 2.4.2 Wear of Cartilage -- 2.5 Development of Hydrogels for Potential Replacement Materials -- 2.5.1 Important Properties of Articular Cartilage -- 2.5.2 Scaffolds -- 2.5.3 Synthetic Polymer -- 2.5.4 Polyacrylamide -- 2.5.5 PEG Hydrogel -- 2.5.6 PVA Hydrogel -- 2.5.7 Double Network Hydrogel -- 2.5.8 Triple Network Hydrogel -- 2.6 Tribological, Mechanical, and Structural Properties of Potential Cartilage Replacement Hydrogel -- 2.6.1 Polyacrylamide -- 2.6.2 PEG Hydrogel -- 2.6.3 PVA Hydrogel -- 2.6.4 Double Network Hydrogel.
2.6.5 Triple Network Hydrogel -- 2.7 Structural and Mechanical Property Relation with Surface Properties -- 2.7.1 Mechanical Properties -- 2.7.2 Structural Properties -- 2.8 Conclusion -- References -- Chapter 3: Recent Advancements in Developing Nanobiosensors for Treating Inflammatory Diseases of Human: A Comprehensive Overview -- 3.1 Introduction -- 3.2 Technological Outlines in Developing Nanobiosensors -- 3.2.1 Importance of Nanotechnology in Biosensing -- 3.2.2 Classification of Nanomaterials -- 3.2.3 Nanomaterials Used in Designing Biosensors -- 3.3 Methodologies Involved in Transduction -- 3.3.1 Label-Based Biosensors -- 3.3.2 Label-Free Biosensors -- 3.4 Different Nanobiosensing Techniques -- 3.4.1 Optical Sensing -- 3.4.2 Electrochemical/Electrical Sensing -- 3.4.3 Magnetic Sensing -- 3.4.4 Mass-Based Sensing -- 3.5 Tribology of Nanoparticles in the Context of Developing Nanobiosensors -- 3.6 Therapeutic Applications of Nanobiosensors -- 3.6.1 Therapeutic Application in Cancer -- 3.6.2 Neurodegenerative Diseases -- 3.6.3 Infectious Diseases -- 3.6.4 Metabolic Diseases -- 3.7 Advantages and Limitations of Nanobiosensors -- 3.7.1 Advantages of Nanobiosensors -- 3.7.2 Limitations of Nanobiosensors -- 3.8 Conclusion and Future Direction -- References -- Chapter 4: Biological Smart Materials: Materials for Cancer Treatment -- 4.1 Introduction -- 4.2 Surface Modification to Increase the Biocompatibility -- 4.2.1 Surface Functionalization -- 4.2.2 Bioconjugation -- 4.3 Synthesis Approach -- 4.3.1 Hydrothermal Method -- 4.3.2 Chemical Vapor Deposition (CVD) -- 4.3.3 Wet Chemical Method -- 4.4 Plasmonic Black Bodies (PBBs) -- 4.4.1 Gold NP (AuNPs)-Based PBB -- 4.4.2 Silver NPs (Ag NPs)-Based PBB -- 4.4.3 Platinum NPs (Pt NPs)-Based PBB -- 4.5 Biomimetic NP -- 4.6 Upconverting NP (UCNP) -- 4.6.1 Synthesis -- 4.7 Inorganic NP -- 4.7.1 Synthesis.
4.8 Photothermal Therapy (PTT) -- 4.8.1 PTT of PBB -- 4.8.1.1 Au NP for PTT -- 4.8.1.2 Ag NP for PTT -- 4.8.1.3 Pt NP for PTT -- 4.8.1.4 PTT of Biomimetic Materials -- 4.8.2 Photothermal Therapy of Upconverting Materials -- 4.8.2.1 PTT Activity of UCNPs UPLNs@mSiO2 -- 4.8.2.2 PTT Activity of UCNPs-PANPs -- 4.8.3 PTT of Inorganic Materials -- 4.9 Conclusion -- References -- Chapter 5: Tribological Measurements of Human Skin -- 5.1 Introduction -- 5.2 Human Skin -- 5.3 Friction of Skin -- 5.4 Lubrication and Skin -- 5.5 Skin Sensation and Perception -- 5.6 Impact of Clothing and Textile -- 5.7 Skin Tribology in Medical Applications -- 5.8 Impact of Skin Care Products -- 5.9 Impact of Skin Ageing -- 5.10 Future Scope -- 5.11 Conclusion -- References -- Chapter 6: Tribological Hurdles in Biomedical Manufacturing: A Comprehensive Examination -- 6.1 Introduction -- 6.1.1 Class 1 -- 6.1.2 Class 2 -- 6.1.3 Class 3 -- 6.2 Types of Biomedical Devices -- 6.3 Biotribology Involved with Biomedical Devices, Tribology-A Point of View and Perspective with Tribology in Biomedical Devices -- 6.4 Techniques Used for Manufacturing of Biomedical Device -- 6.4.1 Surface Modification Techniques -- 6.4.1.1 Surface Patterning -- 6.4.1.2 Direct-Write Patterning -- 6.4.1.3 Using a Stylus to Write -- 6.4.1.4 Using Quills, Pins, and Inkjets for Printing -- 6.4.1.5 Dip-Pen Nanotechnology -- 6.4.1.6 Nanografting and Nanoshaving -- 6.4.1.7 Composing Using Beams -- 6.4.1.8 Direct Write Photolithography (DWP) -- 6.4.1.9 Light-Beam Lithography Electron -- 6.4.1.10 Focused Ion Beam Lithography -- 6.4.2 Fabrication Techniques -- 6.4.2.1 Advanced Technique Developed by Biocompatible Film Technology -- 6.4.2.2 Non-invasive Technique-Vascular Wall Motion (VWM) Monitoring System -- 6.4.2.3 Cost-Effective Techniques for CKD Biodevice.
6.4.2.4 Non-invasive Glucose Monitoring Devices Technique -- 6.4.2.5 Biosensing Device Techniques Involving Volumetric Glucose Sensors, Optical or Spectroscopy Techniques for Other Detection Purposes -- 6.4.2.6 Cost-Effective Electrochemical Voltametric Sensors Techniques -- 6.4.2.7 Three-Dimensional (3D) Printing Techniques -- 6.4.2.8 UV-LED Stereolithography Printer Technique -- 6.4.2.9 4D Printing Techniques -- 6.4.2.10 Advanced Biomedical Techniques Involving Biorobots -- 6.5 Challenges with Applying Biotribology in Biomedical Devices -- 6.6 Future Scopes of Biotribology in the Field of Biomedical Devices, Targeting and Troubleshooting the Challenges -- 6.7 Summary and Conclusion -- References -- Chapter 7: Navigating the Landscape: Cutting-Edge Biomedical Manufacturing Techniques -- 7.1 Introduction -- 7.2 Size Limitations in Biomedical Manufacturing -- 7.2.1 Challenges of Manufacturing Small-Scale Biomedical Devices -- 7.2.2 Exploration of Potential Solutions and Emerging Technologies -- 7.3 Inconsistent Quality in Biomedical Manufacturing -- 7.3.1 Maintaining Consistent Quality in Biomedical Manufacturing -- 7.4 Scaling Issues in Biomedical Manufacturing -- 7.5 High Cost of Manufacturing Final Parts -- 7.6 Mechanical Biocompatibility Challenges -- 7.7 Poor Bio-Printing Resolution -- 7.8 High Cell Damage Rate in Biomedical Manufacturing -- 7.9 Limited Biomaterial Selection -- 7.10 Perspectives and Future Directions -- 7.11 Conclusion -- References -- Chapter 8: Animal Tribology -- 8.1 Introduction -- 8.2 Animal Tribology -- 8.2.1 Joint -- 8.2.2 Exoskeleton Contact with Surrounding -- 8.2.3 Integumentary Change -- 8.2.4 Other Body Parts with Its Surrounding -- 8.3 Application of Tribology in Biological System -- 8.3.1 Nanotribology -- 8.4 Green Tribology -- 8.4.1 Main Areas of Green Tribology -- 8.5 Conclusion -- References.
Chapter 9: Medical Devices Tribology -- 9.1 Introduction -- 9.2 Bio-Tribological Issues -- 9.3 Research Advances in the Bio-Tribology -- 9.3.1 Artificial Joints -- 9.3.2 Bone Fracture Fixation -- 9.3.3 Dental Restoration and Implants -- 9.3.4 Cardiovascular Devices -- 9.3.5 Minimal Invasive Surgical Devices -- 9.4 Current Challenges and Future Work -- References -- Chapter 10: Composites for Drug-Eluting Devices: Emerging Biomedical Applications -- 10.1 Introduction -- 10.2 Composite Materials for Drug Delivery -- 10.2.1 Characteristics of Composites -- 10.2.2 Role of Composite Materials in Drug Delivery -- 10.2.2.1 Structural Integrity -- 10.2.2.2 Controlled Release Properties -- 10.2.2.3 Enhanced Drug Loading Capacity -- 10.2.2.4 Tailored Material Properties -- 10.2.3 Importance of Selecting Suitable Matrix Materials -- 10.2.3.1 Biocompatibility -- 10.2.3.2 Degradability and Biodegradability -- 10.2.3.3 Mechanical Properties -- 10.2.3.4 Drug Compatibility -- 10.2.3.5 Fabrication Compatibility -- 10.2.3.6 Cost and Accessibility -- 10.3 Factors Influencing Composite Selection -- 10.3.1 Matrix Material Properties -- 10.3.2 Release Mechanisms (Controlled and Burst Release) -- 10.3.3 Toxicity Evaluation of Composite Materials -- 10.3.4 Biocompatibility Assessment -- 10.3.4.1 In Vitro Cell Culture Studies -- 10.3.4.2 Hemocompatibility Studies -- 10.3.4.3 In Vivo Animal Studies -- 10.3.4.4 Histological Analysis -- 10.3.4.5 Immune Response Evaluation -- 10.3.4.6 Biodegradation Assessment -- 10.4 Surface Engineering Considerations -- 10.4.1 Impact of Surface Engineering on Wear and Friction -- 10.4.2 Techniques for Enhancing Surface Properties of Drug-Eluting Composites -- 10.4.2.1 Surface Coatings -- 10.4.2.2 Plasma Treatment -- 10.4.2.3 Surface Grafting -- 10.4.2.4 Dip Coating -- 10.4.2.5 Spray Coating System -- 10.4.2.6 Electrotreated Coating.
10.4.2.7 Nanocoating and Nanoparticle Incorporation.
Titolo autorizzato: Applications of Biotribology in Biomedical Systems  Visualizza cluster
ISBN: 9783031583278
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910869175703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui