Vai al contenuto principale della pagina

Advanced Machine Learning Technologies and Applications : Proceedings of AMLTA 2021 / / edited by Aboul-Ella Hassanien, Kuo-Chi Chang, Tang Mincong



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Advanced Machine Learning Technologies and Applications : Proceedings of AMLTA 2021 / / edited by Aboul-Ella Hassanien, Kuo-Chi Chang, Tang Mincong Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (1,144 pages) : illustrations
Disciplina: 006.31
Soggetto topico: Computational intelligence
Artificial intelligence
Big data
Computational Intelligence
Artificial Intelligence
Big Data
Persona (resp. second.): HassanienAboul Ella
ZhangGuoqi
MincongTang
Nota di contenuto: Living with COVID-19: A Data Mining Approach for Social Media Learning -- Impact of COVID-19 Pandemic on Diet Prediction and Patient Health based on Support Vector Machine -- Text Classification of Arabic text: Deep learning in ANLP -- Classification of date fruits in a controlled environment using Convolutional Neural Networks -- Job Candidate Rank Approach using Machine Learning Techniques -- Analysis of Arabic Songs: Abdel ElHalim as a Case Study -- Arabic Multi-label Text Classification of News Articles.
Sommario/riassunto: This book presents the refereed proceedings of the 6th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2021) held in Cairo, Egypt, during March 22–24, 2021, and organized by the Scientific Research Group of Egypt (SRGE). The papers cover current research Artificial Intelligence Against COVID-19, Internet of Things Healthcare Systems, Deep Learning Technology, Sentiment analysis, Cyber-Physical System, Health Informatics, Data Mining, Power and Control Systems, Business Intelligence, Social media, Control Design, and Smart Systems.
Titolo autorizzato: Advanced machine learning technologies and applications  Visualizza cluster
ISBN: 3-030-69717-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910484064003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Advances in Intelligent Systems and Computing, . 2194-5365 ; ; 1339