top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Acoustic Technologies in Biology and Medicine / / edited by Adem Ozcelik, Ryan Becker, and Tony Jun Huang
Acoustic Technologies in Biology and Medicine / / edited by Adem Ozcelik, Ryan Becker, and Tony Jun Huang
Edizione [First edition.]
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2024]
Descrizione fisica 1 online resource (402 pages)
Disciplina 615.83
Soggetto topico Sound - Therapeutic use
ISBN 3-527-84130-X
3-527-84132-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Fundamentals of Acoustic Wave Generation and Propagation -- 1.1 Introduction -- 1.1.1 Acoustic or Sound Waves -- 1.1.2 Dominos Effect -- 1.1.3 Elastic vs Inelastic Waves -- 1.1.4 Scope of Acoustics -- 1.2 Brief History of Acoustic Waves -- 1.2.1 Early History -- 1.2.2 History of Acoustic Streaming -- 1.2.3 History of Acoustic Radiation Force -- 1.3 What Is an Acoustic Wave? -- 1.3.1 Acoustic Parameters -- 1.3.2 Displacement, Velocity, and Pressure Fields -- 1.3.3 Wave Propagation -- 1.3.4 Wave Dissipation -- 1.3.5 Wave Dispersion -- 1.4 Modes of Acoustic Waves -- 1.4.1 Categorization Based on Frequency Range -- 1.4.2 Categorization Based on Propagation Mode -- 1.4.2.1 Longitudinal Waves -- 1.4.2.2 Shear Waves -- 1.4.2.3 Rayleigh Waves -- 1.4.2.4 Love Waves -- 1.4.2.5 Lamb Waves -- 1.4.3 Categorization Based on Wave Configuration -- 1.4.3.1 Traveling Waves -- 1.4.3.2 Standing Waves -- 1.5 Acoustic Wave Propagation and Interaction -- 1.5.1 Transmission and Reflection of Acoustic Waves -- 1.5.2 Acoustic Scattering -- 1.5.3 Acoustic Radiation -- 1.6 Acoustic Wave Attenuation -- 1.6.1 Viscoelastic Attenuation -- 1.6.2 Acousto‐Thermal Heating -- 1.6.3 Acoustic Streaming Flow -- 1.6.3.1 Eckart Streaming -- 1.6.3.2 Rayleigh Streaming -- 1.6.3.3 Bubble‐Driven Microstreaming -- 1.6.3.4 Applications of Acoustic Streaming Flow -- 1.7 Generation and Propagation of Acoustic Waves -- 1.7.1 Acoustic Waves Generation in Nature -- 1.7.2 Generation of Acoustic Waves in Lab -- 1.7.2.1 Lower‐Frequency Acoustic Waves -- 1.7.2.2 Piezoelectricity and High‐Frequency Wave Generation -- 1.8 Acoustic Waves Effects in Fluidic Media -- 1.8.1 Vibrating Membranes and Sharp‐Edge Structures -- 1.8.2 Oscillating Bubbles -- 1.8.2.1 Cavitation -- 1.8.3 Optoacoustic Imaging.
1.8.4 Manifestations of Acoustic Radiation Force and Acoustic Streaming Flow -- References -- Chapter 2 Basic Theories and Physics of Acoustic Technologies -- 2.1 Introduction -- 2.2 Acoustic Waves in Solids -- 2.2.1 Governing Equation -- 2.2.2 Acoustic Waves in Non‐piezoelectric Solids -- 2.2.3 Acoustic Waves in Piezoelectric Solids -- 2.3 Acoustic Waves in Fluids -- 2.3.1 Governing Equations -- 2.3.2 Acoustic Streaming -- 2.3.2.1 Modeling Approach for Slow Streaming -- 2.3.2.2 Modeling Approach for Fast Streaming -- 2.3.3 Distinction Between Lagrangian and Eulerian Fluid Velocity and Stokes' Drift -- 2.3.4 Acoustic Streaming Near Solid Particles -- 2.3.5 Acoustic Streaming Near Fluid-Fluid Interfaces -- 2.4 Forces in Acoustofluidic Systems -- 2.4.1 Primary Acoustic Radiation Force -- 2.4.2 Secondary Acoustic Radiation Force -- 2.4.2.1 Forces Between Two Rigid Spheres -- 2.4.2.2 Forces Between Two Bubbles -- 2.4.2.3 Forces Between a Solid Particle and a Bubble -- 2.4.2.4 Forces Between a Liquid Drop and a Bubble -- 2.4.3 Hydrodynamic Drag Force -- 2.5 Conclusions and Perspectives -- References -- Chapter 3 Materials for Acoustic Wave Generation and Modulation -- 3.1 Introduction -- 3.1.1 Generation and Detection of Ultrasound -- 3.1.2 Technologies for Ultrasound Transducers -- 3.2 Piezoelectricity -- 3.2.1 Model Equations -- 3.2.1.1 Stress‐Charge Formulation -- 3.2.1.2 Strain‐Charge Formulation -- 3.2.1.3 Stress‐Field Formulation -- 3.2.1.4 Strain‐Field Formulation -- 3.2.2 The Piezoelectric Constants -- 3.2.3 Longitudinal Motion in a Piezoelectric Material -- 3.2.3.1 A Simple Piezoelectric Model -- 3.2.3.2 Waves in the Piezoelectric Material -- 3.3 Piezoelectric Materials -- 3.3.1 Piezoelectric Crystals -- 3.3.2 Piezoelectric Ceramics -- 3.3.3 Piezoelectric Polymers -- 3.3.4 Piezoelectric Composites -- 3.4 Ultrasound Transducers.
3.4.1 Elements of a Transducer -- 3.4.2 The Piezoelectric Slab -- 3.4.3 Matching Layers -- 3.4.3.1 Classical Matching Layer Design -- 3.4.3.2 Multiple Matching Layer Design -- 3.4.3.3 Broadband Matching Layer Design -- 3.4.4 Backing Layer -- 3.4.5 Electrical Impedance Matching Network -- 3.5 Ultrasound Beams -- 3.5.1 Circular Aperture Transducers -- 3.5.2 Focused Transducers -- 3.5.3 Phased‐Array Transducers -- 3.6 Acoustic Lenses -- 3.6.1 Refraction by Bulky Lenses -- 3.6.1.1 Spherical Lenses -- 3.6.1.2 Ellipsoidal Lenses -- 3.6.1.3 Axicon Lenses -- 3.6.1.4 Frensel and Fraxicon Lenses -- 3.6.1.5 Lenses for Vortex Generation -- 3.6.2 Diffraction by Gratings -- 3.6.2.1 Cartesian Diffraction Grating -- 3.6.2.2 Asymmetric Diffraction Grating -- 3.6.2.3 Fresnel Zone Plates -- 3.6.2.4 Archimedean Spiral Gratings -- 3.6.2.5 Fresnel‐Spiral Zone Plate -- 3.6.3 Reflection by Curved Surfaces -- 3.6.3.1 Parabolic Reflectors -- 3.6.3.2 Ellipsoidal Reflectors -- 3.6.4 Holograms -- 3.6.4.1 Field Projections -- 3.6.4.2 Synthesis of Acoustic Images -- 3.6.4.3 Biomedical Applications of Holograms -- References -- Chapter 4 Ultrasound and Ultrasonic Imaging in Medicine: Recent Advances -- 4.1 Introduction -- 4.2 Ultrasound Waves -- 4.2.1 Types of Ultrasonic Waves -- 4.2.2 Behavior of Ultrasound Waves at Interfaces -- 4.2.3 Ultrasound Power and Intensity -- 4.2.4 Ultrasound Applications -- 4.3 Ultrasonic Imaging -- 4.3.1 Ultrasonic Imaging System -- 4.3.1.1 Transducer -- 4.3.1.2 Probes -- 4.3.1.3 Central Processing Unit -- 4.3.1.4 Output Display -- 4.3.2 Focus -- 4.3.3 Resolution -- 4.3.4 Beamforming -- 4.4 Sound‐Tissue Interactions in Ultrasonography -- 4.4.1 Reflection -- 4.4.2 Refraction -- 4.4.3 Absorption -- 4.4.4 Attenuation -- 4.4.4.1 Attenuation by Reflection, Refraction, and Deflection -- 4.4.4.2 Attenuation by Scattering -- 4.4.4.3 Attenuation by Absorption.
4.4.4.4 Time Gain Reduction (TGR) and Depth Gain Reduction (DGR) -- 4.5 Ultrasonic Imaging Methods -- 4.5.1 Real‐Time Imaging -- 4.5.1.1 A‐Mode -- 4.5.1.2 M‐Mode -- 4.5.1.3 B‐Mode -- 4.5.2 Doppler Ultrasonography -- 4.5.2.1 Continuous Wave Doppler -- 4.5.2.2 Duplex Doppler -- 4.5.2.3 Color Doppler -- 4.5.3 Real‐Time Artifacts in Imaging -- 4.5.4 Factors Affecting Image Quality -- 4.6 Tissue Harmonic Imaging (THI) -- 4.6.1 The Occurrence of Harmonic Signals -- 4.6.2 The Separation of Harmonic Signals from the Main Signal -- 4.6.3 The Advantages of Harmonic Signals -- 4.7 Recent Advances in Ultrasound Imaging for Medicine -- References -- Chapter 5 Photoacoustic Imaging and Sensing for Biomedical Applications -- 5.1 Introduction -- 5.2 Photoacoustic Imaging Applications -- 5.2.1 PAI of Breast Cancer -- 5.2.1.1 In Vivo Imaging -- 5.2.1.2 Ex Vivo Imaging -- 5.2.2 PAI for Skin Imaging -- 5.2.2.1 PAI of Skin Cancer -- 5.2.2.2 PAI of Inflammatory Skin Diseases -- 5.2.2.3 PAI of Wounds -- 5.3 Photoacoustic Sensing for Biomedical Applications -- 5.3.1 Noninvasive Temperature Monitoring in Deep Tissue -- 5.3.2 Noninvasive Glucose Sensing -- References -- Chapter 6 Therapeutic Ultrasound -- 6.1 Introduction -- 6.2 Ultrasound‐Induced Bioeffects -- 6.2.1 Introduction -- 6.2.2 Thermal Effects -- 6.2.3 Mechanical Effects -- 6.2.3.1 Cavitation -- 6.2.4 Contrast‐Enhanced Effects -- 6.2.4.1 Microbubbles -- 6.2.4.2 Nanobubbles -- 6.2.4.3 Nanodroplets -- 6.2.5 Safety and Regulations -- 6.3 Therapeutic Ultrasound Applications -- 6.3.1 High‐Intensity Focused Ultrasound -- 6.3.2 Histotripsy -- 6.3.3 Shock Wave Lithotripsy -- 6.3.4 Drug Delivery and Gene Therapy -- 6.3.5 Blood-Brain Barrier Opening -- 6.3.6 Low‐Intensity Ultrasound for Neuromodulation -- 6.3.7 Bone Healing -- 6.3.8 Sonothrombolysis -- 6.3.9 Other Applications -- 6.4 Conclusions -- References.
Chapter 7 Application of Ultrasound‐Responsive Reagents for Drug Delivery Systems -- 7.1 Historical Background of Research on Bubble Reagents for Medicine -- 7.2 Use of Bubble Reagents as Drug Delivery Systems -- 7.2.1 Acoustic Cavitation -- 7.2.2 Importance of Inertial and Non‐inertial Cavitation in Improving Drug Permeability -- 7.2.3 Targeting and Focusing Using Acoustic Means -- 7.3 Variation of Ultrasound‐Responsive Reagents for DDS -- 7.3.1 Shell Composition -- 7.3.2 Improved Stability by Polyethylene Glycol (PEG) Modification -- 7.3.3 Modification with Targeting Ligands -- 7.3.4 Drug and Gene Loading -- 7.3.5 Extended Adaptation of Ultrasound‐Responsive Reagents -- 7.4 Research on Treatment of Diseases Using Ultrasonic Drug Delivery -- 7.4.1 Cancer -- 7.4.2 Central Nervous System Diseases -- 7.5 Conclusion -- References -- Chapter 8 Acoustic Levitation and Acoustic Holograms -- 8.1 Introduction -- 8.1.1 History of Acoustic Levitation -- 8.1.1.1 Classical Acoustic Levitator -- 8.1.1.2 Phased Array Levitator (PAL) -- 8.2 Acoustic Holograms -- 8.3 Numerical Simulation of Acoustic Levitator -- 8.3.1 Pressure Field Calculation -- 8.3.1.1 Huygens' Approach -- 8.3.1.2 Spherical Harmonics Expansion -- 8.3.1.3 Angular Spectrum Method -- 8.3.2 Acoustic Radiation Force -- 8.3.2.1 Gor'kov -- 8.3.2.2 Spherical Harmonic Approach -- 8.4 Acoustic Hologram Optimization -- 8.4.1 Optimization Example with Diff‐PAT -- 8.5 Applications in Biology and Medicine -- 8.5.1 Specimen Holding -- 8.5.2 Experiment Automation -- 8.5.3 3D Display -- 8.6 Conclusion and Future Remarks -- Acknowledgments -- References -- Chapter 9 Application of Ultrasonic Waves in Bioparticle Manipulation and Separation -- 9.1 Introduction -- 9.2 Bioparticle Manipulation -- 9.2.1 Hydrodynamic Bioparticle Manipulation -- 9.2.2 Immunological (Antigen-Antibody Reaction) Bioparticle Manipulation.
9.2.3 Electrokinetic Bioparticle Manipulation.
Record Nr. UNINA-9910829852803321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2024]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adhesive Bonding Technology and Testing / / Ana Sofia Queiros Ferreira Barbosa [and four others]
Adhesive Bonding Technology and Testing / / Ana Sofia Queiros Ferreira Barbosa [and four others]
Autore Queiros Ferreira Barbosa Ana Sofia
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (208 pages)
Disciplina 668.3
Soggetto topico Adhesives
Adhesives - Testing
ISBN 3-527-83802-3
3-527-83800-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Simple Practical Demonstrations -- 1.1 Importance of Loading Mode on Bonded Joint Performance -- 1.1.1 Introduction -- 1.1.2 Equipment -- 1.1.3 Materials -- 1.1.4 Safety Precautions -- 1.1.5 Experimental Procedure -- 1.1.5.1 In Class -- 1.1.5.2 In the Laboratory -- 1.2 Surface Treatments and Methods to Evaluate Surface Energy -- 1.2.1 Introduction -- 1.2.2 Equipment -- 1.2.3 Materials -- 1.2.4 Safety Precautions -- 1.2.5 Experimental Procedure -- 1.2.5.1 In Class -- 1.2.5.2 In Laboratory -- 1.3 Stress Distribution Along the Overlap Length -- 1.3.1 Introduction -- 1.3.2 Equipment -- 1.3.3 Materials -- 1.3.4 Safety Precautions -- 1.3.5 Test Procedure -- 1.4 Visual Identification of Defects in Adhesive Joints -- 1.4.1 Introduction -- 1.4.2 Equipment -- 1.4.3 Materials -- 1.4.4 Safety Precautions -- 1.4.5 Test Procedure -- 1.5 Failure Analysis of Adhesive Joints -- 1.5.1 Introduction -- 1.5.2 Equipment -- 1.5.3 Materials -- 1.5.4 Safety Precautions -- 1.5.5 Test Procedure -- Chapter 2 Production and Testing -- 2.1 Bulk Specimens -- 2.1.1 Introduction -- 2.1.2 Adhesive Pouring Technique -- 2.1.3 Metallic Mold -- 2.1.4 Adhesive Application -- 2.1.5 Curing Procedure -- 2.1.6 Machining Procedure -- 2.1.7 Testing Procedure -- 2.2 Thick Adherend Shear Specimens -- 2.2.1 Introduction -- 2.2.2 Metallic Mold -- 2.2.3 Surface Treatment of Adherends -- 2.2.4 Geometrical Control Using Shims -- 2.2.5 Specimen Manufacture -- 2.2.6 Final Specimen Preparation -- 2.2.7 Testing Procedure -- 2.3 Fracture Mechanics Specimens -- 2.3.1 Introduction -- 2.3.2 Metallic Mold -- 2.3.3 Surface Treatment of Adherends -- 2.3.4 Adhesive Spacers -- 2.3.5 Specimen Manufacture -- 2.3.6 Final Preparation of Specimens -- 2.3.7 Testing Procedure -- 2.3.8 Data Reduction Schemes -- 2.4 Single‐Lap Joint Specimens.
2.4.1 Introduction -- 2.4.2 Surface Treatment of Adherends -- 2.4.3 Joint Manufacture -- 2.4.4 Final Preparation of Specimens -- 2.4.5 Testing Procedure -- Chapter 3 Laboratorial Activities and Report Examples -- 3.1 Effect of Surface Treatment on the Mechanical Behavior of Adhesively Bonded Joints -- 3.1.1 Introduction -- 3.1.1.1 Joint Strength Prediction -- 3.1.2 Work Description -- 3.1.3 Materials -- 3.1.3.1 Adherends (Tables and ) -- 3.1.3.2 Adhesive (Table ) -- 3.1.4 Experimental Work -- 3.1.5 Report -- 3.1.5.1 Introduction -- 3.1.5.2 Experimental Procedure -- 3.1.5.3 Materials -- 3.1.5.4 Failure Load Prediction -- 3.1.5.5 Experimental Results and Discussion -- 3.1.5.6 Conclusions -- 3.2 Effect of Adhesive Type and Overlap Length on the Failure Load of Adhesively Bonded Joints -- 3.2.1 Introduction -- 3.2.2 Work Description -- 3.2.3 Materials -- 3.2.3.1 Adherends -- 3.2.3.2 Adhesives (Table ) -- 3.2.4 Experimental Work -- 3.2.5 Report -- 3.2.5.1 Introduction -- 3.2.5.2 Materials -- 3.2.5.3 Prediction of the Failure Loads -- 3.2.5.4 Experimental Results -- 3.2.5.5 Discussion -- 3.2.5.6 Conclusions -- 3.3 Effect of Adhesive Thickness on the Failure Load of Adhesively Bonded Joints -- 3.3.1 Introduction -- 3.3.2 Work Description -- 3.3.3 Materials -- 3.3.3.1 Adherends: -- 3.3.3.2 Adhesives: -- 3.3.4 Experimental Work -- 3.3.5 Report -- 3.3.5.1 Introduction -- 3.3.5.2 Experimental Details -- 3.3.5.3 Prediction -- 3.3.5.4 Experimental Results -- 3.3.5.5 Failure Surfaces -- 3.3.5.6 Conclusion -- 3.4 Effect of Overlap Length on the Strength and Failure Mechanism of Composite Adhesive Joints -- 3.4.1 Introduction -- 3.4.2 Work Description -- 3.4.3 Materials -- 3.4.3.1 Adherends: -- 3.4.3.2 Adhesives (Table ) -- 3.4.4 Experimental Work -- 3.4.5 Report -- 3.4.5.1 Introduction -- 3.4.5.2 Characterization of the Tested Joints.
3.4.5.3 Theoretical Prediction of Failure Load -- 3.4.5.4 Comparison with Experimental Results -- 3.4.5.5 Conclusions -- 3.5 Modeling a Single‐Lap Joint Using Finite Element Analysis and Cohesive Zone Modeling -- 3.5.1 Introduction -- 3.5.2 Work Description -- 3.5.3 Materials -- 3.5.3.1 Adherends: -- 3.5.3.2 Adhesives (Table ) -- 3.5.4 Modeling Procedure -- 3.5.5 Report -- 3.5.5.1 Introduction -- 3.5.5.2 Module/Part -- 3.5.5.3 Module/Property -- 3.5.5.4 Module/Section -- 3.5.5.5 Module/Step (First Phase) -- 3.5.5.6 Module/Load -- 3.5.5.7 Module/Mesh -- 3.5.5.8 Module/Step (Second Phase) -- 3.5.5.9 Module/Job -- 3.5.5.10 Module/Visualization -- 3.6 Case Study in Joint Design for a Structural Automotive Application -- 3.6.1 Introduction -- 3.6.2 Report -- 3.6.2.1 Introduction -- 3.6.2.2 Design Brief -- 3.6.2.3 Adhesive Selection -- 3.6.2.4 Surface Treatment Selection -- 3.6.2.5 Material Properties -- 3.6.2.6 Joint Design -- 3.6.2.7 Numerical Models -- 3.6.2.8 Design Validation -- 3.6.2.9 Design for Manufacturing -- 3.6.2.10 Quality Control Techniques -- 3.6.2.11 Health and Safety Concerns -- References -- Chapter 4 Essay and Multi‐choice Questions -- 4.1 Essay Questions -- 4.2 Multi‐choice Questions -- Solutions -- Essay Questions - Example Answers -- Multi-choice Questions - Solutions -- Index -- EULA.
Record Nr. UNINA-9910829818903321
Queiros Ferreira Barbosa Ana Sofia  
Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Alginate fibers and wound dressings : seaweed derived natural therapy / / Yimin Qin
Alginate fibers and wound dressings : seaweed derived natural therapy / / Yimin Qin
Autore Qin Yimin
Edizione [1st ed.]
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2024]
Descrizione fisica 1 online resource (259 pages)
Disciplina 620.11
Soggetto topico Materials science
ISBN 3-527-84520-8
3-527-84519-4
3-527-84518-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910829868203321
Qin Yimin  
Weinheim, Germany : , : WILEY-VCH GmbH, , [2024]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Axially chiral compounds : asymmetric synthesis and applications / / edited by Bin Tan
Axially chiral compounds : asymmetric synthesis and applications / / edited by Bin Tan
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (339 pages)
Disciplina 547.2
Soggetto topico Asymmetric synthesis
ISBN 3-527-82518-5
3-527-82517-7
3-527-82516-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Contents -- Preface -- Part I Asymmetric Synthesis -- 1 Introduction and Characteristics -- 1.1 Introduction and Classification -- 1.2 Specification of Configuration -- References -- 2 Metal-Catalyzed Asymmetric Synthesis of Biaryl Atropisomers -- 2.1 Introduction -- 2.2 Biaryl Coupling -- 2.2.1 Cross-coupling -- 2.2.2 Other Types of Cross-coupling -- 2.2.3 Oxidative Coupling -- 2.3 Desymmetrization and (Dynamic) Kinetic Resolution via Functional Group Transformation -- 2.3.1 Desymmetrization of Prochiral Biaryls -- 2.3.2 Kinetic Resolution of Racemic Axially Chiral Biaryls -- 2.3.3 Dynamic Kinetic Resolution of Racemic Axially Chiral Biaryls -- 2.3.4 Ring-opening Reactions -- 2.4 Formation of Aromatic Ring via [2 + 2 + 2] Cycloaddition -- 2.4.1 Cobalt-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.4.2 Rhodium-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.4.3 Iridium-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.5 CH Bond Functionalization -- 2.5.1 Chiral Catalyst-Controlled CH Bond Functionalization -- 2.5.2 Chiral Auxiliary-Induced CH Bond Functionalization -- 2.5.3 Atroposelective CH Arylation -- 2.6 Summary and Conclusions -- References -- 3 Organocatalytic Asymmetric Synthesis of Biaryl Atropisomers -- 3.1 Introduction -- 3.2 Atroposelective Synthesis of Biaryls by Kinetic Resolution Strategy -- 3.2.1 Conventional Kinetic Resolution -- 3.2.2 Dynamic Kinetic Resolution Strategy -- 3.3 Atroposelective Synthesis of Biaryls by Desymmetrization Strategy -- 3.4 Atroposelective Arene Formation to Access Axially Chiral Biaryls -- 3.4.1 Intramolecular Atroposelective Arene Formation -- 3.4.2 Atroposelective Arene Formation via Intermolecular Annulation -- 3.5 Atroposelective Synthesis of Biaryls via Direct C-H Arylation Strategy.
3.5.1 Organocatalytic C-H Arylation by [3,3]-Sigmatropic Rearrangement -- 3.5.2 Atroposelective Arylation Based on Quinone Derivatives -- 3.5.3 Atroposelective Nucleophilic Aromatic Substitution -- 3.6 Conclusion -- References -- 4 Enantioselective Synthesis of Heterobiaryl Atropisomers -- 4.1 Introduction -- 4.2 Atropisomeric Heterobiaryls Featuring Two Six-Membered Rings -- 4.2.1 Functionalization of Heterobiaryls -- 4.2.2 Atroposelective Ring Formation -- 4.3 Atropisomeric Heterobiaryls Featuring a Five-Membered Ring -- 4.3.1 From Preformed Cyclic Systems -- 4.3.2 Formation of the Heterobiaryl Axis -- 4.3.3 Atroposelective Ring Formations -- 4.4 Atropisomeric Heterobiaryls Featuring Two Five-Membered Rings -- 4.4.1 Functionalization of Heterobiaryls -- 4.4.2 Aromatization of a Bis-heterocycle -- 4.4.3 Atroposelective Ring Formations -- 4.5 Conclusion and Outlook -- References -- 5 Asymmetric Synthesis of Nonbiaryl Atropisomers -- 5.1 Introduction -- 5.2 Styrenes -- 5.2.1 Axially Chiral Styrenes via Point-to-Axial Chirality Transfer -- 5.2.2 Axially Chiral Styrenes Controlled by Chiral Auxiliary -- 5.2.3 Metal-Catalyzed Enantioselective Synthesis of Axially Chiral Styrene -- 5.2.4 Organocatalytic Synthesis of Axially Chiral Styrenes -- 5.3 Amides -- 5.3.1 Stereochemical Stability of Atropisomeric Amides -- 5.3.2 Lithiation of Atropisomeric Amides to Access Various Alkylations -- 5.3.3 Syntheses of Atropisomerically Stable Amides via Chiral Auxiliaries -- 5.3.4 Catalytic Asymmetric Dihydroxylation via Sharpless KR Conditions -- 5.3.5 Atroposelective Aldol Reactions via DKR Approach -- 5.3.6 Atroposelective Halogenation of Aromatic Amides -- 5.3.7 Atroposelective [2 + 2 + 2] Cycloaddition Toward Atropisomerically Stable Benzamides -- 5.3.8 Enantioselective O-alkylation of Axially Chiral Amides -- 5.4 Diaryl Ethers.
5.4.1 Resolution Studies of Diaryl Ethers -- 5.4.2 Enantioselective Synthesis of Diaryl Ether -- 5.4.3 Enzyme-Catalyzed Synthesis of Diaryl Ether -- 5.4.4 Synthesis of Scaffolds Related to Diaryl Ethers via Csp2-H Activation -- 5.5 Anilides -- 5.5.1 Stereochemical Stability of Axially Chiral Anilides -- 5.5.2 Kinetic Resolution or DKR to Access Axially Chiral Anilides -- 5.5.3 Synthesis of Axially Chiral Anilides via Planar to Axial Chirality Transfer -- 5.5.4 Metal-Catalyzed Synthesis of Chiral Anilides -- 5.5.5 Organocatalytic Synthesis of Chiral Anilides -- 5.6 Lactams and Related Scaffolds -- 5.6.1 Stereochemical Stability of Atropisomeric Lactams -- 5.6.2 Diastereoselective Cyclization Toward Atropisomeric Lactams -- 5.6.3 Enantioselective N-arylation Toward Lactam Atropisomers -- 5.6.4 Atroposelective [2 + 2 + 2] Cycloaddition with Isocyanates -- 5.6.5 Chiral Auxiliary Approach Toward Resolving Atropisomeric Lactams -- 5.6.6 Enantioselective Brønsted Base-Catalyzed Tandem Isomerization-Michael Reactions Toward Atropisomeric Lactams -- 5.7 Diaryl Amines -- 5.7.1 Stereochemical Stability of Diaryl Amines -- 5.7.2 Atroposelective Approaches Toward Diaryl Amines or Related Scaffolds -- References -- 6 Asymmetric Synthesis of Chiral Allenes -- 6.1 Introduction -- 6.2 Substrate- and Reagent-Controlled Chiral Allenes Synthesis: Stoichiometric Asymmetric Reactions -- 6.2.1 Chirality Transfer -- 6.2.2 Asymmetric Reaction with Stoichiometric Chiral Reagents -- 6.3 Catalytic Asymmetric Strategies for the Syntheses of Chiral Allenes -- 6.3.1 Catalytic Enantioselective Synthesis from Achiral Substances -- 6.3.2 Enantioselective Allene Synthesis from Chiral Substrates -- 6.4 Conclusion and Perspective -- References -- 7 Asymmetric Synthesis of Axially Chiral Natural Products -- 7.1 Introduction.
7.2 Diastereoselective Coupling-Point to Axial Chirality Transfer -- 7.2.1 Intramolecular Diastereoselective Coupling -- 7.2.2 Intermolecular Diastereoselective Aryl Coupling -- 7.3 Atroposelective Aryl Coupling with Chiral Catalyst -- 7.3.1 Catalytic Oxidative Aryl Coupling -- 7.3.2 Transition Metal-Catalyzed Atroposelective Aryl Coupling -- 7.4 Asymmetric Transformation of Biaryls -- 7.4.1 Dynamic Kinetic Resolution of Biaryl Structure - The Lactone Method -- 7.4.2 Desymmetrization of Prostereogenic Biaryls -- 7.4.3 Catalytic Atroposelective C-H Functionalization of Biaryls -- 7.4.4 Diastereoselective Synthesis from Racemic Biaryls -- 7.5 Atroposelective Aromatization -- 7.6 Diastereoselective Macrocyclization -- 7.7 Conclusions and Perspectives -- References -- Part II Applications -- 8 Asymmetric Transformations -- 8.1 Asymmetric Transformation of Axially Chiral Biaryls and Heterobiaryls -- 8.1.1 Asymmetric Transformations with Preservation of Axially Chiral Backbone -- 8.1.2 Asymmetric Transformations with Axial-to-central Chirality Transfer -- 8.2 Asymmetric Transformation of Axially Chiral Non-biaryl Compounds -- 8.2.1 Cycloadditions and Cyclizations -- 8.2.2 Reaction with Nucleophiles -- 8.2.3 Reaction with Electrophiles -- 8.2.4 Photoreactions -- 8.3 Asymmetric Transformation of Chiral Allenes -- 8.3.1 Cyclization -- 8.3.2 Cycloaddition -- 8.3.3 Reaction with Nucleophiles -- 8.3.4 Chiral Allene as Nucleophiles -- 8.4 Conclusion -- References -- 9 Application for Axially Chiral Ligands -- 9.1 Introduction -- 9.2 Monodentate Phosphines -- 9.2.1 Asymmetric Hydrogenations -- 9.2.2 Asymmetric Hydrosilylation of Olefins -- 9.2.3 Asymmetric Allylic Substitutions -- 9.2.4 Miscellaneous Catalytic Asymmetric Transformations -- 9.3 Diphosphine Ligands -- 9.3.1 Hydrogenation Reactions -- 9.3.2 CC Bond Formation -- 9.3.3 CX Bond Formation.
9.4 Phosphoramidite and Phosphamide Ligands -- 9.4.1 Asymmetric Conjugate Addition with Organometallic Nucleophiles -- 9.4.2 Hydrogenation -- 9.4.3 Hydroboration/Hydrosilylation Reactions -- 9.4.4 Allylic Substitutions -- 9.4.5 Other Asymmetric Transformations -- 9.5 N-P Ligands -- 9.5.1 Applications of N, P-Ligands -- 9.6 C2-Symmetric Diols -- 9.6.1 Mukaiyama Aldol Condensation Reactions -- 9.6.2 Diels-Alder Reaction -- 9.6.3 Arrangement Reaction -- 9.6.4 Reductive Reactions -- 9.7 Other Axially Chiral Ligands in Asymmetric Transformations -- 9.8 Conclusions -- References -- 10 Application for Axially Chiral Organocatalysts -- 10.1 Introduction -- 10.2 Chiral Brønsted Acid Catalysts -- 10.2.1 Chiral BINOL Derivatives -- 10.2.2 Chiral Phosphoric Acid -- 10.3 Chiral Counteranion Catalysts and Chiral Phase Transfer Catalysts -- 10.4 Brønsted Base Catalyst -- 10.5 Lewis Base Catalysts -- References -- 11 Application in Drugs and Materials -- 11.1 Drugs -- 11.2 Chiral Recognition -- 11.3 Chiral Additives in Liquid Crystals -- References -- Index -- EULA.
Record Nr. UNINA-9910555004303321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Axially chiral compounds : asymmetric synthesis and applications / / edited by Bin Tan
Axially chiral compounds : asymmetric synthesis and applications / / edited by Bin Tan
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2021]
Descrizione fisica 1 online resource (339 pages)
Disciplina 547.2
Soggetto topico Asymmetric synthesis
ISBN 3-527-82518-5
3-527-82517-7
3-527-82516-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Contents -- Preface -- Part I Asymmetric Synthesis -- 1 Introduction and Characteristics -- 1.1 Introduction and Classification -- 1.2 Specification of Configuration -- References -- 2 Metal-Catalyzed Asymmetric Synthesis of Biaryl Atropisomers -- 2.1 Introduction -- 2.2 Biaryl Coupling -- 2.2.1 Cross-coupling -- 2.2.2 Other Types of Cross-coupling -- 2.2.3 Oxidative Coupling -- 2.3 Desymmetrization and (Dynamic) Kinetic Resolution via Functional Group Transformation -- 2.3.1 Desymmetrization of Prochiral Biaryls -- 2.3.2 Kinetic Resolution of Racemic Axially Chiral Biaryls -- 2.3.3 Dynamic Kinetic Resolution of Racemic Axially Chiral Biaryls -- 2.3.4 Ring-opening Reactions -- 2.4 Formation of Aromatic Ring via [2 + 2 + 2] Cycloaddition -- 2.4.1 Cobalt-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.4.2 Rhodium-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.4.3 Iridium-Catalyzed Enantioselective [2 + 2 + 2] Cycloadditions -- 2.5 CH Bond Functionalization -- 2.5.1 Chiral Catalyst-Controlled CH Bond Functionalization -- 2.5.2 Chiral Auxiliary-Induced CH Bond Functionalization -- 2.5.3 Atroposelective CH Arylation -- 2.6 Summary and Conclusions -- References -- 3 Organocatalytic Asymmetric Synthesis of Biaryl Atropisomers -- 3.1 Introduction -- 3.2 Atroposelective Synthesis of Biaryls by Kinetic Resolution Strategy -- 3.2.1 Conventional Kinetic Resolution -- 3.2.2 Dynamic Kinetic Resolution Strategy -- 3.3 Atroposelective Synthesis of Biaryls by Desymmetrization Strategy -- 3.4 Atroposelective Arene Formation to Access Axially Chiral Biaryls -- 3.4.1 Intramolecular Atroposelective Arene Formation -- 3.4.2 Atroposelective Arene Formation via Intermolecular Annulation -- 3.5 Atroposelective Synthesis of Biaryls via Direct C-H Arylation Strategy.
3.5.1 Organocatalytic C-H Arylation by [3,3]-Sigmatropic Rearrangement -- 3.5.2 Atroposelective Arylation Based on Quinone Derivatives -- 3.5.3 Atroposelective Nucleophilic Aromatic Substitution -- 3.6 Conclusion -- References -- 4 Enantioselective Synthesis of Heterobiaryl Atropisomers -- 4.1 Introduction -- 4.2 Atropisomeric Heterobiaryls Featuring Two Six-Membered Rings -- 4.2.1 Functionalization of Heterobiaryls -- 4.2.2 Atroposelective Ring Formation -- 4.3 Atropisomeric Heterobiaryls Featuring a Five-Membered Ring -- 4.3.1 From Preformed Cyclic Systems -- 4.3.2 Formation of the Heterobiaryl Axis -- 4.3.3 Atroposelective Ring Formations -- 4.4 Atropisomeric Heterobiaryls Featuring Two Five-Membered Rings -- 4.4.1 Functionalization of Heterobiaryls -- 4.4.2 Aromatization of a Bis-heterocycle -- 4.4.3 Atroposelective Ring Formations -- 4.5 Conclusion and Outlook -- References -- 5 Asymmetric Synthesis of Nonbiaryl Atropisomers -- 5.1 Introduction -- 5.2 Styrenes -- 5.2.1 Axially Chiral Styrenes via Point-to-Axial Chirality Transfer -- 5.2.2 Axially Chiral Styrenes Controlled by Chiral Auxiliary -- 5.2.3 Metal-Catalyzed Enantioselective Synthesis of Axially Chiral Styrene -- 5.2.4 Organocatalytic Synthesis of Axially Chiral Styrenes -- 5.3 Amides -- 5.3.1 Stereochemical Stability of Atropisomeric Amides -- 5.3.2 Lithiation of Atropisomeric Amides to Access Various Alkylations -- 5.3.3 Syntheses of Atropisomerically Stable Amides via Chiral Auxiliaries -- 5.3.4 Catalytic Asymmetric Dihydroxylation via Sharpless KR Conditions -- 5.3.5 Atroposelective Aldol Reactions via DKR Approach -- 5.3.6 Atroposelective Halogenation of Aromatic Amides -- 5.3.7 Atroposelective [2 + 2 + 2] Cycloaddition Toward Atropisomerically Stable Benzamides -- 5.3.8 Enantioselective O-alkylation of Axially Chiral Amides -- 5.4 Diaryl Ethers.
5.4.1 Resolution Studies of Diaryl Ethers -- 5.4.2 Enantioselective Synthesis of Diaryl Ether -- 5.4.3 Enzyme-Catalyzed Synthesis of Diaryl Ether -- 5.4.4 Synthesis of Scaffolds Related to Diaryl Ethers via Csp2-H Activation -- 5.5 Anilides -- 5.5.1 Stereochemical Stability of Axially Chiral Anilides -- 5.5.2 Kinetic Resolution or DKR to Access Axially Chiral Anilides -- 5.5.3 Synthesis of Axially Chiral Anilides via Planar to Axial Chirality Transfer -- 5.5.4 Metal-Catalyzed Synthesis of Chiral Anilides -- 5.5.5 Organocatalytic Synthesis of Chiral Anilides -- 5.6 Lactams and Related Scaffolds -- 5.6.1 Stereochemical Stability of Atropisomeric Lactams -- 5.6.2 Diastereoselective Cyclization Toward Atropisomeric Lactams -- 5.6.3 Enantioselective N-arylation Toward Lactam Atropisomers -- 5.6.4 Atroposelective [2 + 2 + 2] Cycloaddition with Isocyanates -- 5.6.5 Chiral Auxiliary Approach Toward Resolving Atropisomeric Lactams -- 5.6.6 Enantioselective Brønsted Base-Catalyzed Tandem Isomerization-Michael Reactions Toward Atropisomeric Lactams -- 5.7 Diaryl Amines -- 5.7.1 Stereochemical Stability of Diaryl Amines -- 5.7.2 Atroposelective Approaches Toward Diaryl Amines or Related Scaffolds -- References -- 6 Asymmetric Synthesis of Chiral Allenes -- 6.1 Introduction -- 6.2 Substrate- and Reagent-Controlled Chiral Allenes Synthesis: Stoichiometric Asymmetric Reactions -- 6.2.1 Chirality Transfer -- 6.2.2 Asymmetric Reaction with Stoichiometric Chiral Reagents -- 6.3 Catalytic Asymmetric Strategies for the Syntheses of Chiral Allenes -- 6.3.1 Catalytic Enantioselective Synthesis from Achiral Substances -- 6.3.2 Enantioselective Allene Synthesis from Chiral Substrates -- 6.4 Conclusion and Perspective -- References -- 7 Asymmetric Synthesis of Axially Chiral Natural Products -- 7.1 Introduction.
7.2 Diastereoselective Coupling-Point to Axial Chirality Transfer -- 7.2.1 Intramolecular Diastereoselective Coupling -- 7.2.2 Intermolecular Diastereoselective Aryl Coupling -- 7.3 Atroposelective Aryl Coupling with Chiral Catalyst -- 7.3.1 Catalytic Oxidative Aryl Coupling -- 7.3.2 Transition Metal-Catalyzed Atroposelective Aryl Coupling -- 7.4 Asymmetric Transformation of Biaryls -- 7.4.1 Dynamic Kinetic Resolution of Biaryl Structure - The Lactone Method -- 7.4.2 Desymmetrization of Prostereogenic Biaryls -- 7.4.3 Catalytic Atroposelective C-H Functionalization of Biaryls -- 7.4.4 Diastereoselective Synthesis from Racemic Biaryls -- 7.5 Atroposelective Aromatization -- 7.6 Diastereoselective Macrocyclization -- 7.7 Conclusions and Perspectives -- References -- Part II Applications -- 8 Asymmetric Transformations -- 8.1 Asymmetric Transformation of Axially Chiral Biaryls and Heterobiaryls -- 8.1.1 Asymmetric Transformations with Preservation of Axially Chiral Backbone -- 8.1.2 Asymmetric Transformations with Axial-to-central Chirality Transfer -- 8.2 Asymmetric Transformation of Axially Chiral Non-biaryl Compounds -- 8.2.1 Cycloadditions and Cyclizations -- 8.2.2 Reaction with Nucleophiles -- 8.2.3 Reaction with Electrophiles -- 8.2.4 Photoreactions -- 8.3 Asymmetric Transformation of Chiral Allenes -- 8.3.1 Cyclization -- 8.3.2 Cycloaddition -- 8.3.3 Reaction with Nucleophiles -- 8.3.4 Chiral Allene as Nucleophiles -- 8.4 Conclusion -- References -- 9 Application for Axially Chiral Ligands -- 9.1 Introduction -- 9.2 Monodentate Phosphines -- 9.2.1 Asymmetric Hydrogenations -- 9.2.2 Asymmetric Hydrosilylation of Olefins -- 9.2.3 Asymmetric Allylic Substitutions -- 9.2.4 Miscellaneous Catalytic Asymmetric Transformations -- 9.3 Diphosphine Ligands -- 9.3.1 Hydrogenation Reactions -- 9.3.2 CC Bond Formation -- 9.3.3 CX Bond Formation.
9.4 Phosphoramidite and Phosphamide Ligands -- 9.4.1 Asymmetric Conjugate Addition with Organometallic Nucleophiles -- 9.4.2 Hydrogenation -- 9.4.3 Hydroboration/Hydrosilylation Reactions -- 9.4.4 Allylic Substitutions -- 9.4.5 Other Asymmetric Transformations -- 9.5 N-P Ligands -- 9.5.1 Applications of N, P-Ligands -- 9.6 C2-Symmetric Diols -- 9.6.1 Mukaiyama Aldol Condensation Reactions -- 9.6.2 Diels-Alder Reaction -- 9.6.3 Arrangement Reaction -- 9.6.4 Reductive Reactions -- 9.7 Other Axially Chiral Ligands in Asymmetric Transformations -- 9.8 Conclusions -- References -- 10 Application for Axially Chiral Organocatalysts -- 10.1 Introduction -- 10.2 Chiral Brønsted Acid Catalysts -- 10.2.1 Chiral BINOL Derivatives -- 10.2.2 Chiral Phosphoric Acid -- 10.3 Chiral Counteranion Catalysts and Chiral Phase Transfer Catalysts -- 10.4 Brønsted Base Catalyst -- 10.5 Lewis Base Catalysts -- References -- 11 Application in Drugs and Materials -- 11.1 Drugs -- 11.2 Chiral Recognition -- 11.3 Chiral Additives in Liquid Crystals -- References -- Index -- EULA.
Record Nr. UNINA-9910830826903321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical micro- and nanorobots in disease treatment : design, preparation, and applications / / Chun Mao and Mimi Wan
Biomedical micro- and nanorobots in disease treatment : design, preparation, and applications / / Chun Mao and Mimi Wan
Autore Mao Chun (Writer on microrobots)
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (253 pages)
Disciplina 610.28
Soggetto topico Biomedical engineering
Diseases - Treatment
Microrobots
ISBN 3-527-83977-1
3-527-83975-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Origin of Biomedical Micro‐ and Nanorobots -- 1.2 A Long Journey -- 1.3 Moment of Glory -- 1.4 Three Laws -- 1.5 Main Contents of this Book -- References -- Chapter 2 Definition and Classification -- 2.1 Definition -- 2.2 Classification -- References -- Chapter 3 Design and Preparation -- 3.1 Substrate Selection -- 3.1.1 Metal Materials -- 3.1.2 Inorganic Materials -- 3.1.3 Organic Materials -- 3.1.4 Natural Materials -- 3.1.5 Hybrid Materials -- 3.2 Driving System -- 3.2.1 Driving System Based on Biological Components -- 3.2.2 Driving System Based on External Fields -- 3.2.3 Driving System Based on Chemical Reactions -- References -- Chapter 4 Characterization -- 4.1 Characterization of Motion -- 4.1.1 In Aqueous Environment -- 4.1.2 In Complex Environments In Vitro -- 4.2 In Vivo Tracking Technologies -- 4.2.1 Fluorescence Imaging Technology -- 4.2.2 MRI Technology -- 4.2.3 Radionuclide Imaging Technology -- 4.2.4 Ultrasonic Imaging Technology -- 4.2.5 Other Imaging Methods -- References -- Chapter 5 Biosafety -- 5.1 Biosafety of Micro‐ and Nanorobot Substrate -- 5.1.1 Material Composition -- 5.1.2 Micro‐ and Nanoscale Influence -- 5.1.3 Interaction with Physiological Environment In Vivo -- 5.1.4 Ultimate Destiny -- 5.1.5 Genotoxicity -- 5.1.6 Research Method of Biosafety -- 5.2 Biosafety of Driving System of Micro‐ and Nanorobots -- 5.2.1 Biological Micro‐ and Nanorobots -- 5.2.2 Physical Field‐Driven Micro‐ and Nanorobots -- 5.2.3 Chemical Reaction‐Driven Micro‐ and Nanorobots -- 5.3 Biosafety of Autonomous Motion Behavior of Micro‐ and Nanorobots -- 5.4 Biosafety Evaluation Methods for Micro‐ and Nanorobots -- References -- Chapter 6 Autonomous Motion Behavior -- 6.1 Autonomous Motion Mechanism.
6.1.1 Motion Mechanism of Biological Micro‐ and Nanorobots -- 6.1.1.1 Bacteria -- 6.1.1.2 Sperm -- 6.1.1.3 Immune Cells -- 6.1.2 Motion Mechanism of Physical Field‐Driven Micro‐ and Nanorobots -- 6.1.2.1 Magnetic Field‐Driving Mode -- 6.1.2.2 Photic Driving Mode -- 6.1.2.3 Ultrasonic Field‐Driving Mode -- 6.1.3 Motion Mechanism of Chemical Reaction‐Driven Micro‐ and Nanorobots -- 6.1.3.1 Self‐Electrophoresis Mode -- 6.1.3.2 Self‐Diffusiophoresis Mode -- 6.1.3.3 Bubble Mode -- 6.2 Trend Behavior Mechanism -- 6.2.1 Magnetotactic System -- 6.2.2 Phototactic System -- 6.2.3 Chemotaxis System -- 6.3 Motion Control -- 6.3.1 Speed Control Mode -- 6.3.2 Direction Control Mode -- 6.3.3 Control of Start and Stop -- References -- Chapter 7 Functions -- 7.1 Moving in Complex Physiological Environment -- 7.2 Loading Power Source, Drug, or Imaging Agent -- 7.3 Targeting Specific Cells or Physiological Tissues -- 7.4 Promoting Cell Uptake and Improving Tissue Permeability -- 7.5 Imaging Capability -- 7.6 Information Interaction and Intelligent Decision -- 7.7 Diagnosis and Treatment of Disease -- References -- Chapter 8 For Cardiovascular Disease Treatment -- 8.1 Thrombus -- 8.2 Atherosclerosis -- 8.3 Cerebral Apoplexy -- References -- Chapter 9 For Cancer Treatment -- 9.1 Cancer Diagnosis -- 9.2 Targeting and Delivery -- 9.3 Treatment of Different Cancer Species -- 9.4 Treatment Mechanism -- 9.4.1 Chemotherapy -- 9.4.2 Metabolic Therapy -- 9.4.3 Gas Therapy -- 9.4.4 Optical Therapy -- 9.4.5 Biotherapy -- 9.4.6 Immunotherapy -- 9.4.7 Multimodal Combined Therapy -- 9.5 Theranostics -- References -- Chapter 10 For Other Diseases' Treatment -- 10.1 Ophthalmic Diseases -- 10.2 Orthopedic Diseases -- 10.3 Gastrointestinal Diseases -- 10.4 Neurological Diseases -- 10.5 Bacterial Infection -- 10.6 Blood Heavy Metal Poisoning -- References.
Chapter 11 Future Development Trend -- 11.1 Biosafety of Micro‐ and Nanorobots -- 11.2 New Materials and Technologies of Micro‐ and Nanorobots -- 11.3 Intelligent Micro‐ and Nanorobots -- 11.4 New Treatment Mode -- 11.5 New Detection Technology for Micro‐ and Nanorobots -- 11.6 Outlook and Future Challenges -- References -- Postscript -- Glossary -- Index -- EULA.
Record Nr. UNINA-9910830782603321
Mao Chun (Writer on microrobots)  
Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Carbohydrate-based therapeutics / / edited by Roberto Adamo and Luigi Lay
Carbohydrate-based therapeutics / / edited by Roberto Adamo and Luigi Lay
Edizione [1st ed.]
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2024]
Descrizione fisica 1 online resource (411 pages)
Disciplina 547.78
Soggetto topico Carbohydrates
Chemistry
ISBN 3-527-83132-0
3-527-83133-9
3-527-83131-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830377903321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2024]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chiral nanoprobes for biological applications / / edited by Chuanlai Xu
Chiral nanoprobes for biological applications / / edited by Chuanlai Xu
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (307 pages)
Disciplina 620.115
Soggetto topico Probes (Electronic instruments)
Nanostructured materials
Chirality
ISBN 3-527-83360-9
3-527-83358-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910573096803321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Chiral nanoprobes for biological applications / / edited by Chuanlai Xu
Chiral nanoprobes for biological applications / / edited by Chuanlai Xu
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (307 pages)
Disciplina 620.115
Soggetto topico Probes (Electronic instruments)
Nanostructured materials
Chirality
ISBN 3-527-83360-9
3-527-83358-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830990803321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Conceptual density functional theory . Volume 1 : towards a new chemical reactivity theory / / edited by Shubin Liu
Conceptual density functional theory . Volume 1 : towards a new chemical reactivity theory / / edited by Shubin Liu
Pubbl/distr/stampa Germany : , : WILEY-VCH GmbH, , [2022]
Descrizione fisica 1 online resource (708 pages)
Disciplina 541.39
Soggetto topico Density functionals
Chemical reactions
Quantum chemistry
Soggetto genere / forma Electronic books.
ISBN 3-527-82994-6
3-527-82992-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566700803321
Germany : , : WILEY-VCH GmbH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui