top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
3D modeling & surfacing / Bill Fleming
3D modeling & surfacing / Bill Fleming
Autore FLEMING, Bill
Pubbl/distr/stampa San Diego [etc.] : Morgan Kaufmann, copyr. 1999
Descrizione fisica XII, 340 p. : ill. ; 24 cm. + + CD ROM
Disciplina 006.6
Soggetto non controllato Grafica - Programmi per microelaboratori
ISBN 0-12-260490-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990000063190203316
FLEMING, Bill  
San Diego [etc.] : Morgan Kaufmann, copyr. 1999
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Autore Suh Jung W
Edizione [First edition.]
Pubbl/distr/stampa Waltham, MA : , : Morgan Kaufmann, , 2014
Descrizione fisica 1 online resource (259 p.)
Disciplina 518.0285
Altri autori (Persone) KimYoungmin
Soggetto topico Graphics processing units - Programming
Soggetto genere / forma Electronic books.
ISBN 0-12-407916-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution
2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex
4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing
5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9
6.2.3 CUBLAS with Visual Profiler
Record Nr. UNISA-996426331403316
Suh Jung W  
Waltham, MA : , : Morgan Kaufmann, , 2014
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Accelerating MATLAB with GPU computing : a primer with examples / Jung W. Suh, Youngmin Kim
Accelerating MATLAB with GPU computing : a primer with examples / Jung W. Suh, Youngmin Kim
Autore SUH, Jung W
Pubbl/distr/stampa Waltham, MA, : Morgan Kaufmann, 2014
Descrizione fisica Testo elettronico (PDF) (X, 248 p. : ill.)
Disciplina 519.4028553
Altri autori (Persone) KIM, Youngmin
Soggetto topico Matlab
ISBN 978-0-12-408080-5
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996444844803316
SUH, Jung W  
Waltham, MA, : Morgan Kaufmann, 2014
Risorse elettroniche
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Autore Suh Jung W
Edizione [First edition.]
Pubbl/distr/stampa Waltham, MA : , : Morgan Kaufmann, , 2014
Descrizione fisica 1 online resource (259 p.)
Disciplina 518.0285
Altri autori (Persone) KimYoungmin
Soggetto topico Graphics processing units - Programming
Soggetto genere / forma Electronic books.
ISBN 0-12-407916-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution
2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex
4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing
5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9
6.2.3 CUBLAS with Visual Profiler
Record Nr. UNINA-9910453700903321
Suh Jung W  
Waltham, MA : , : Morgan Kaufmann, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Accelerating MATLAB with GPU computing : a primer with examples / / Jung W. Suh, Youngmin Kim
Autore Suh Jung W
Edizione [First edition.]
Pubbl/distr/stampa Waltham, MA : , : Morgan Kaufmann, , 2014
Descrizione fisica 1 online resource (259 p.)
Disciplina 518.0285
Altri autori (Persone) KimYoungmin
Soggetto topico Graphics processing units - Programming
ISBN 0-12-407916-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Accelerating MATLAB with GPU Computing; Copyright Page; Contents; Preface; Target Readers and Contents; Directions of this Book; GPU Utilization Using c-mex Versus Parallel Computing Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives; 1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5 Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize File Read/Write Within the Loop
1.6.2 Minimize Dynamically Changing the Path and Changing the Variable Class 1.6.3 Maintain a Balance Between the Code Readability and Optimization; 1.7 Examples; 2 Configurations for MATLAB and CUDA; 2.1 Chapter Objectives; 2.2 MATLAB Configuration for c-mex Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2 NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello, mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image Convolution
2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex; 2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time Performance Profiling; 2.7 Summary; 3 Optimization Planning through Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3 c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4 Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex
4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory Layout for Complex Numbers in c-mex; 4.3 Logical Programming Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3 Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2 Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5 Memory; 4.5 Analyzing Our First Naïve Approach; 4.5.1 Optimization A: Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU Processing
5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays; 5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives; 6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4 Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8; 6.2.2.9 Step 9
6.2.3 CUBLAS with Visual Profiler
Record Nr. UNINA-9910657330203321
Suh Jung W  
Waltham, MA : , : Morgan Kaufmann, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Agile software architecture : aligning agile processes and software architectures / / edited by Muhammad Ali Babar, Alan W. Brown, Ivan Mistrik
Agile software architecture : aligning agile processes and software architectures / / edited by Muhammad Ali Babar, Alan W. Brown, Ivan Mistrik
Edizione [1st edition]
Pubbl/distr/stampa Amsterdam : , : Morgan Kaufmann, , [2014]
Descrizione fisica 1 online resource (433 p.)
Disciplina 005.1/2
Altri autori (Persone) Ali BabarMuhammad
MistríkIvan
Soggetto topico Agile software development
Software architecture
Soggetto genere / forma Electronic books.
ISBN 0-12-407885-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Chapter 1: Introduction to ASA ASA: The State-of-the-Art ASA: Industrial/commercial perspective ASA: Current Challenges and Future Directions Part I: Fundamentals of Agile Architecting Chapter 2: The DCI Paradigm: Beyond Class-Oriented Architecture to Object Orientation Chapter 3: Refactoring software architecture Chapter 4: Architecture Decisions: Who, How and When? Part II: Managing Software Architecture in Agile Projects Chapter 5: Combining agile development and variability handling to achieve adaptable software architectures Chapter 6: Agile software architecture knowledge management Chapter 7: Continuous software architecture analysis Chapter 8: Bridging user stories and software architectures: a guidance support for agile architecting Part III: Agile Architecting in Specific Domains Chapter 9: Architecture-centric testing for security: An agile perspective Chapter 10: Multi-tenancy multi-target architectures: Extending multi-tenancy architectures for agile deployment and development Part IV: Industrial Viewpoints on Agile Architecting Chapter 11: Bursting the Agile Bubble Anti-Pattern Chapter 12: Building a Platform for Innovation: Architecture and Agile as Key Enablers Chapter 13: Opportunities, threats and limitations of emergent architecture Chapter 14: Aviva GI: Architecture as a Key Driver for Agile Success.
Record Nr. UNINA-9910453480703321
Amsterdam : , : Morgan Kaufmann, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Agile software architecture : aligning agile processes and software architectures / / edited by Muhammad Ali Babar, Alan W. Brown, Ivan Mistrik
Agile software architecture : aligning agile processes and software architectures / / edited by Muhammad Ali Babar, Alan W. Brown, Ivan Mistrik
Edizione [1st edition]
Pubbl/distr/stampa Amsterdam : , : Morgan Kaufmann, , [2014]
Descrizione fisica 1 online resource (433 p.)
Disciplina 005.1/2
Altri autori (Persone) Ali BabarMuhammad
MistríkIvan
Soggetto topico Agile software development
Software architecture
ISBN 0-12-407885-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Chapter 1: Introduction to ASA ASA: The State-of-the-Art ASA: Industrial/commercial perspective ASA: Current Challenges and Future Directions Part I: Fundamentals of Agile Architecting Chapter 2: The DCI Paradigm: Beyond Class-Oriented Architecture to Object Orientation Chapter 3: Refactoring software architecture Chapter 4: Architecture Decisions: Who, How and When? Part II: Managing Software Architecture in Agile Projects Chapter 5: Combining agile development and variability handling to achieve adaptable software architectures Chapter 6: Agile software architecture knowledge management Chapter 7: Continuous software architecture analysis Chapter 8: Bridging user stories and software architectures: a guidance support for agile architecting Part III: Agile Architecting in Specific Domains Chapter 9: Architecture-centric testing for security: An agile perspective Chapter 10: Multi-tenancy multi-target architectures: Extending multi-tenancy architectures for agile deployment and development Part IV: Industrial Viewpoints on Agile Architecting Chapter 11: Bursting the Agile Bubble Anti-Pattern Chapter 12: Building a Platform for Innovation: Architecture and Agile as Key Enablers Chapter 13: Opportunities, threats and limitations of emergent architecture Chapter 14: Aviva GI: Architecture as a Key Driver for Agile Success.
Record Nr. UNINA-9910667899803321
Amsterdam : , : Morgan Kaufmann, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An introduction to parallel programming / Peter S. Pacheco, Malensek Matthew
An introduction to parallel programming / Peter S. Pacheco, Malensek Matthew
Autore PACHECO, Peter S.
Edizione [2.ed.]
Pubbl/distr/stampa Cambridge, : Morgan Kaufmann, 2022
Descrizione fisica XIX, 468 p. : ill. ; 24 cm
Disciplina 005.2752
Altri autori (Persone) MALENSEK, Matthew
Soggetto topico Dati - Elaborazione parallela
Programmazione parallela
ISBN 978-0-12-804605-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione und
Record Nr. UNISA-996437851203316
PACHECO, Peter S.  
Cambridge, : Morgan Kaufmann, 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
An introduction to parallel programming / Peter S. Pacheco
An introduction to parallel programming / Peter S. Pacheco
Autore Pacheco, Peter S.
Pubbl/distr/stampa Amsterdam : Elsevier : Morgan Kaufmann, ©2011
Descrizione fisica xix, 370 p. : ill. ; 24 cm
Disciplina 005.2'75
Soggetto non controllato Programmazione parallela
ISBN 978-0-12-374260-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990010099410403321
Pacheco, Peter S.  
Amsterdam : Elsevier : Morgan Kaufmann, ©2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An introduction to parallel programming / Peter S. Pacheco
An introduction to parallel programming / Peter S. Pacheco
Autore Pacheco, Peter S.
Pubbl/distr/stampa Burlington, : Morgan Kaufmann, 2011
Descrizione fisica XIX, 370 p. ; 25 cm.
Disciplina 005.2752
ISBN 9780123742605
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-PMI0022754
Pacheco, Peter S.  
Burlington, : Morgan Kaufmann, 2011
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui