top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
RF and microwave transistor oscillator design [[electronic resource] /] / Andrei Grebennikov
RF and microwave transistor oscillator design [[electronic resource] /] / Andrei Grebennikov
Autore Grebennikov Andrei <1956->
Pubbl/distr/stampa Chichester ; ; Hoboken, N.J., : John Wiley, c2007
Descrizione fisica 1 online resource (457 p.)
Disciplina 621.38133
621.38412
Soggetto topico Microwave transistors
Radio frequency oscillators
Oscillators, Transistor
Soggetto genere / forma Electronic books.
ISBN 1-280-85601-7
9786610856015
0-470-51209-1
1-60119-522-2
0-470-51208-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; About the Author; Preface; Acknowledgements; 1 Nonlinear circuit design methods; 1.1 SPECTRAL-DOMAIN ANALYSIS; 1.1.1 Trigonometric identities; 1.1.2 Piecewise-linear approximation; 1.1.3 Bessel functions; 1.2 TIME-DOMAIN ANALYSIS; 1.3 NEWTON-RAPHSON ALGORITHM; 1.4 QUASILINEAR METHOD; 1.5 VAN DER POL METHOD; 1.6 COMPUTER-AIDED ANALYSIS AND DESIGN; REFERENCES; 2 Oscillator operation and design principles; 2.1 STEADY-STATE OPERATION MODE; 2.2 START-UP CONDITIONS; 2.3 OSCILLATOR CONFIGURATIONS AND HISTORICAL ASPECTS; 2.4 SELF-BIAS CONDITION
2.5 OSCILLATOR ANALYSIS USING MATRIX TECHNIQUES2.5.1 Parallel feedback oscillator; 2.5.2 Series feedback oscillator; 2.6 DUAL TRANSISTOR OSCILLATORS; 2.7 TRANSMISSION-LINE OSCILLATOR; 2.8 PUSH-PUSH OSCILLATOR; 2.9 TRIPLE-PUSH OSCILLATOR; 2.10 OSCILLATOR WITH DELAY LINE; REFERENCES; 3 Stability of self-oscillations; 3.1 NEGATIVE-RESISTANCE OSCILLATOR CIRCUITS; 3.2 GENERAL SINGLE-FREQUENCY STABILITY CONDITION; 3.3 SINGLE-RESONANT CIRCUIT OSCILLATORS; 3.3.1 Series resonant circuit oscillator with constant load; 3.3.2 Parallel resonant circuit oscillator with nonlinear load
3.4 DOUBLE-RESONANT CIRCUIT OSCILLATOR3.5 STABILITY OF MULTI-RESONANT CIRCUITS; 3.5.1 General multi-frequency stability criterion; 3.5.2 Two-frequency oscillation mode and its stability; 3.5.3 Single-frequency stability of oscillator with two coupled resonant circuits; 3.5.4 Transistor oscillators with two coupled resonant circuits; 3.6 PHASE PLANE METHOD; 3.6.1 Free-running oscillations in lossless resonant LC circuits; 3.6.2 Oscillations in lossy resonant LC circuits; 3.6.3 Aperiodic process in lossy resonant LC circuits; 3.6.4 Transformer-coupled MOSFET oscillator
3.7 NYQUIST STABILITY CRITERION3.8 START-UP AND STABILITY; REFERENCES; 4 Optimum design and circuit technique; 4.1 EMPIRICAL OPTIMUM DESIGN APPROACH; 4.2 ANALYTIC OPTIMUM DESIGN APPROACH; 4.3 PARALLEL FEEDBACK OSCILLATORS; 4.3.1 Optimum oscillation condition; 4.3.2 Optimum MOSFET oscillator; 4.4 SERIES FEEDBACK BIPOLAR OSCILLATORS; 4.4.1 Optimum oscillation condition; 4.4.2 Optimum common base oscillator; 4.4.3 Quasilinear approach [23]; 4.4.4 Computer-aided design [24]; 4.5 SERIES FEEDBACK MESFET OSCILLATORS; 4.5.1 Optimum common gate oscillator; 4.5.2 Quasilinear approach [15]
4.5.3 Computer-aided design [28]4.6 HIGH-EFFICIENCY DESIGN TECHNIQUE; 4.6.1 Class C operation mode; 4.6.2 Class E power oscillators; 4.6.3 Class DE power oscillators; 4.6.4 Class F mode and harmonic tuning; 4.7 PRACTICAL OSCILLATOR SCHEMATICS; REFERENCES; 5 Noise in oscillators; 5.1 NOISE FIGURE; 5.2 FLICKER NOISE; 5.3 ACTIVE DEVICE NOISE MODELLING; 5.3.1 MOSFET devices; 5.3.2 MESFET devices; 5.3.3 Bipolar transistors; 5.4 OSCILLATOR NOISE SPECTRUM: LINEAR MODEL; 5.4.1 Parallel feedback oscillator; 5.4.2 Negative resistance oscillator; 5.4.3 Colpitts oscillator
5.5 OSCILLATOR NOISE SPECTRUM: NONLINEAR MODEL
Record Nr. UNINA-9910143583803321
Grebennikov Andrei <1956->  
Chichester ; ; Hoboken, N.J., : John Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF and microwave transistor oscillator design [[electronic resource] /] / Andrei Grebennikov
RF and microwave transistor oscillator design [[electronic resource] /] / Andrei Grebennikov
Autore Grebennikov Andrei <1956->
Pubbl/distr/stampa Chichester ; ; Hoboken, N.J., : John Wiley, c2007
Descrizione fisica 1 online resource (457 p.)
Disciplina 621.38133
621.38412
Soggetto topico Microwave transistors
Radio frequency oscillators
Oscillators, Transistor
ISBN 1-280-85601-7
9786610856015
0-470-51209-1
1-60119-522-2
0-470-51208-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; About the Author; Preface; Acknowledgements; 1 Nonlinear circuit design methods; 1.1 SPECTRAL-DOMAIN ANALYSIS; 1.1.1 Trigonometric identities; 1.1.2 Piecewise-linear approximation; 1.1.3 Bessel functions; 1.2 TIME-DOMAIN ANALYSIS; 1.3 NEWTON-RAPHSON ALGORITHM; 1.4 QUASILINEAR METHOD; 1.5 VAN DER POL METHOD; 1.6 COMPUTER-AIDED ANALYSIS AND DESIGN; REFERENCES; 2 Oscillator operation and design principles; 2.1 STEADY-STATE OPERATION MODE; 2.2 START-UP CONDITIONS; 2.3 OSCILLATOR CONFIGURATIONS AND HISTORICAL ASPECTS; 2.4 SELF-BIAS CONDITION
2.5 OSCILLATOR ANALYSIS USING MATRIX TECHNIQUES2.5.1 Parallel feedback oscillator; 2.5.2 Series feedback oscillator; 2.6 DUAL TRANSISTOR OSCILLATORS; 2.7 TRANSMISSION-LINE OSCILLATOR; 2.8 PUSH-PUSH OSCILLATOR; 2.9 TRIPLE-PUSH OSCILLATOR; 2.10 OSCILLATOR WITH DELAY LINE; REFERENCES; 3 Stability of self-oscillations; 3.1 NEGATIVE-RESISTANCE OSCILLATOR CIRCUITS; 3.2 GENERAL SINGLE-FREQUENCY STABILITY CONDITION; 3.3 SINGLE-RESONANT CIRCUIT OSCILLATORS; 3.3.1 Series resonant circuit oscillator with constant load; 3.3.2 Parallel resonant circuit oscillator with nonlinear load
3.4 DOUBLE-RESONANT CIRCUIT OSCILLATOR3.5 STABILITY OF MULTI-RESONANT CIRCUITS; 3.5.1 General multi-frequency stability criterion; 3.5.2 Two-frequency oscillation mode and its stability; 3.5.3 Single-frequency stability of oscillator with two coupled resonant circuits; 3.5.4 Transistor oscillators with two coupled resonant circuits; 3.6 PHASE PLANE METHOD; 3.6.1 Free-running oscillations in lossless resonant LC circuits; 3.6.2 Oscillations in lossy resonant LC circuits; 3.6.3 Aperiodic process in lossy resonant LC circuits; 3.6.4 Transformer-coupled MOSFET oscillator
3.7 NYQUIST STABILITY CRITERION3.8 START-UP AND STABILITY; REFERENCES; 4 Optimum design and circuit technique; 4.1 EMPIRICAL OPTIMUM DESIGN APPROACH; 4.2 ANALYTIC OPTIMUM DESIGN APPROACH; 4.3 PARALLEL FEEDBACK OSCILLATORS; 4.3.1 Optimum oscillation condition; 4.3.2 Optimum MOSFET oscillator; 4.4 SERIES FEEDBACK BIPOLAR OSCILLATORS; 4.4.1 Optimum oscillation condition; 4.4.2 Optimum common base oscillator; 4.4.3 Quasilinear approach [23]; 4.4.4 Computer-aided design [24]; 4.5 SERIES FEEDBACK MESFET OSCILLATORS; 4.5.1 Optimum common gate oscillator; 4.5.2 Quasilinear approach [15]
4.5.3 Computer-aided design [28]4.6 HIGH-EFFICIENCY DESIGN TECHNIQUE; 4.6.1 Class C operation mode; 4.6.2 Class E power oscillators; 4.6.3 Class DE power oscillators; 4.6.4 Class F mode and harmonic tuning; 4.7 PRACTICAL OSCILLATOR SCHEMATICS; REFERENCES; 5 Noise in oscillators; 5.1 NOISE FIGURE; 5.2 FLICKER NOISE; 5.3 ACTIVE DEVICE NOISE MODELLING; 5.3.1 MOSFET devices; 5.3.2 MESFET devices; 5.3.3 Bipolar transistors; 5.4 OSCILLATOR NOISE SPECTRUM: LINEAR MODEL; 5.4.1 Parallel feedback oscillator; 5.4.2 Negative resistance oscillator; 5.4.3 Colpitts oscillator
5.5 OSCILLATOR NOISE SPECTRUM: NONLINEAR MODEL
Record Nr. UNINA-9910830356403321
Grebennikov Andrei <1956->  
Chichester ; ; Hoboken, N.J., : John Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF and microwave transistor oscillator design / / Andrei Grebennikov
RF and microwave transistor oscillator design / / Andrei Grebennikov
Autore Grebennikov Andrei <1956->
Pubbl/distr/stampa Chichester ; ; Hoboken, N.J., : John Wiley, c2007
Descrizione fisica 1 online resource (457 p.)
Disciplina 621.38133
Soggetto topico Microwave transistors
Radio frequency oscillators
Oscillators, Transistor
ISBN 1-280-85601-7
9786610856015
0-470-51209-1
1-60119-522-2
0-470-51208-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; About the Author; Preface; Acknowledgements; 1 Nonlinear circuit design methods; 1.1 SPECTRAL-DOMAIN ANALYSIS; 1.1.1 Trigonometric identities; 1.1.2 Piecewise-linear approximation; 1.1.3 Bessel functions; 1.2 TIME-DOMAIN ANALYSIS; 1.3 NEWTON-RAPHSON ALGORITHM; 1.4 QUASILINEAR METHOD; 1.5 VAN DER POL METHOD; 1.6 COMPUTER-AIDED ANALYSIS AND DESIGN; REFERENCES; 2 Oscillator operation and design principles; 2.1 STEADY-STATE OPERATION MODE; 2.2 START-UP CONDITIONS; 2.3 OSCILLATOR CONFIGURATIONS AND HISTORICAL ASPECTS; 2.4 SELF-BIAS CONDITION
2.5 OSCILLATOR ANALYSIS USING MATRIX TECHNIQUES2.5.1 Parallel feedback oscillator; 2.5.2 Series feedback oscillator; 2.6 DUAL TRANSISTOR OSCILLATORS; 2.7 TRANSMISSION-LINE OSCILLATOR; 2.8 PUSH-PUSH OSCILLATOR; 2.9 TRIPLE-PUSH OSCILLATOR; 2.10 OSCILLATOR WITH DELAY LINE; REFERENCES; 3 Stability of self-oscillations; 3.1 NEGATIVE-RESISTANCE OSCILLATOR CIRCUITS; 3.2 GENERAL SINGLE-FREQUENCY STABILITY CONDITION; 3.3 SINGLE-RESONANT CIRCUIT OSCILLATORS; 3.3.1 Series resonant circuit oscillator with constant load; 3.3.2 Parallel resonant circuit oscillator with nonlinear load
3.4 DOUBLE-RESONANT CIRCUIT OSCILLATOR3.5 STABILITY OF MULTI-RESONANT CIRCUITS; 3.5.1 General multi-frequency stability criterion; 3.5.2 Two-frequency oscillation mode and its stability; 3.5.3 Single-frequency stability of oscillator with two coupled resonant circuits; 3.5.4 Transistor oscillators with two coupled resonant circuits; 3.6 PHASE PLANE METHOD; 3.6.1 Free-running oscillations in lossless resonant LC circuits; 3.6.2 Oscillations in lossy resonant LC circuits; 3.6.3 Aperiodic process in lossy resonant LC circuits; 3.6.4 Transformer-coupled MOSFET oscillator
3.7 NYQUIST STABILITY CRITERION3.8 START-UP AND STABILITY; REFERENCES; 4 Optimum design and circuit technique; 4.1 EMPIRICAL OPTIMUM DESIGN APPROACH; 4.2 ANALYTIC OPTIMUM DESIGN APPROACH; 4.3 PARALLEL FEEDBACK OSCILLATORS; 4.3.1 Optimum oscillation condition; 4.3.2 Optimum MOSFET oscillator; 4.4 SERIES FEEDBACK BIPOLAR OSCILLATORS; 4.4.1 Optimum oscillation condition; 4.4.2 Optimum common base oscillator; 4.4.3 Quasilinear approach [23]; 4.4.4 Computer-aided design [24]; 4.5 SERIES FEEDBACK MESFET OSCILLATORS; 4.5.1 Optimum common gate oscillator; 4.5.2 Quasilinear approach [15]
4.5.3 Computer-aided design [28]4.6 HIGH-EFFICIENCY DESIGN TECHNIQUE; 4.6.1 Class C operation mode; 4.6.2 Class E power oscillators; 4.6.3 Class DE power oscillators; 4.6.4 Class F mode and harmonic tuning; 4.7 PRACTICAL OSCILLATOR SCHEMATICS; REFERENCES; 5 Noise in oscillators; 5.1 NOISE FIGURE; 5.2 FLICKER NOISE; 5.3 ACTIVE DEVICE NOISE MODELLING; 5.3.1 MOSFET devices; 5.3.2 MESFET devices; 5.3.3 Bipolar transistors; 5.4 OSCILLATOR NOISE SPECTRUM: LINEAR MODEL; 5.4.1 Parallel feedback oscillator; 5.4.2 Negative resistance oscillator; 5.4.3 Colpitts oscillator
5.5 OSCILLATOR NOISE SPECTRUM: NONLINEAR MODEL
Record Nr. UNINA-9910877083203321
Grebennikov Andrei <1956->  
Chichester ; ; Hoboken, N.J., : John Wiley, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF and microwave transmitter design [[electronic resource] /] / Andrei Grebennikov
RF and microwave transmitter design [[electronic resource] /] / Andrei Grebennikov
Autore Grebennikov Andrei <1956->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2011
Descrizione fisica 1 online resource (838 p.)
Disciplina 621.384/131
621.384131
Collana Wiley series in microwave and optical engineering
Soggetto topico Radio - Transmitters and transmission
Microwave circuits
Microwave transmission lines
Soggetto genere / forma Electronic books.
ISBN 1-283-27288-1
9786613272881
0-470-92930-8
0-470-92929-4
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto RF AND MICROWAVETRANSMITTER DESIGN; Contents; Preface; Introduction; References; 1 Passive Elements and Circuit Theory; 1.1 Immittance Two-Port Network Parameters; 1.2 Scattering Parameters; 1.3 Interconnections of Two-Port Networks; 1.4 Practical Two-Port Networks; 1.4.1 Single-Element Networks; 1.4.2 - and T -Type Networks; 1.5 Three-Port Network with Common Terminal; 1.6 Lumped Elements; 1.6.1 Inductors; 1.6.2 Capacitors; 1.7 Transmission Line; 1.8 Types of Transmission Lines; 1.8.1 Coaxial Line; 1.8.2 Stripline; 1.8.3 Microstrip Line; 1.8.4 Slotline; 1.8.5 Coplanar Waveguide; 1.9 Noise
1.9.1 Noise Sources1.9.2 Noise Figure; 1.9.3 Flicker Noise; References; 2 Active Devices and Modeling; 2.1 Diodes; 2.1.1 Operation Principle; 2.1.2 Schottky Diodes; 2.1.3 p-i-n Diodes; 2.1.4 Zener Diodes; 2.2 Varactors; 2.2.1 Varactor Modeling; 2.2.2 MOS Varactor; 2.3 MOSFETs; 2.3.1 Small-Signal Equivalent Circuit; 2.3.2 Nonlinear I-V Models; 2.3.3 Nonlinear C-V Models; 2.3.4 Charge Conservation; 2.3.5 Gate-Source Resistance; 2.3.6 Temperature Dependence; 2.3.7 Noise Model; 2.4 MESFETs and HEMTs; 2.4.1 Small-Signal Equivalent Circuit; 2.4.2 Determination of Equivalent Circuit Elements
2.4.3 Curtice Quadratic Nonlinear Model2.4.4 Parker-Skellern Nonlinear Model; 2.4.5 Chalmers (Angelov) Nonlinear Model; 2.4.6 IAF (Berroth) Nonlinear Model; 2.4.7 Noise Model; 2.5 BJTs and HBTs; 2.5.1 Small-Signal Equivalent Circuit; 2.5.2 Determination of Equivalent Circuit Elements; 2.5.3 Equivalence of Intrinsic - and T -Type Topologies; 2.5.4 Nonlinear Bipolar Device Modeling; 2.5.5 Noise Model; References; 3 Impedance Matching; 3.1 Main Principles; 3.2 Smith Chart; 3.3 Matching with Lumped Elements; 3.3.1 Analytic Design Technique; 3.3.2 Bipolar UHF Power Amplifier
3.3.3 MOSFET VHF High-Power Amplifier3.4 Matching with Transmission Lines; 3.4.1 Analytic Design Technique; 3.4.2 Equivalence Between Circuits with Lumped and Distributed Parameters; 3.4.3 Narrowband Microwave Power Amplifier; 3.4.4 Broadband UHF High-Power Amplifier; 3.5 Matching Networks with Mixed Lumped and Distributed Elements; References; 4 Power Transformers, Combiners, and Couplers; 4.1 Basic Properties; 4.1.1 Three-Port Networks; 4.1.2 Four-Port Networks; 4.2 Transmission-Line Transformers and Combiners; 4.3 Baluns; 4.4 Wilkinson Power Dividers/Combiners; 4.5 Microwave Hybrids
4.6 Coupled-Line Directional CouplersReferences; 5 Filters; 5.1 Types of Filters; 5.2 Filter Design Using Image Parameter Method; 5.2.1 Constant-k Filter Sections; 5.2.2 m-Derived Filter Sections; 5.3 Filter Design Using Insertion Loss Method; 5.3.1 Maximally Flat Low-Pass Filter; 5.3.2 Equal-Ripple Low-Pass Filter; 5.3.3 Elliptic Function Low-Pass Filter; 5.3.4 Maximally Flat Group-Delay Low-Pass Filter; 5.4 Bandpass and Bandstop Transformation; 5.5 Transmission-Line Low-Pass Filter Implementation; 5.5.1 Richards's Transformation; 5.5.2 Kuroda Identities; 5.5.3 Design Example
5.6 Coupled-Line Filters
Record Nr. UNINA-9910133222603321
Grebennikov Andrei <1956->  
Hoboken, N.J., : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF and microwave transmitter design [[electronic resource] /] / Andrei Grebennikov
RF and microwave transmitter design [[electronic resource] /] / Andrei Grebennikov
Autore Grebennikov Andrei <1956->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2011
Descrizione fisica 1 online resource (838 p.)
Disciplina 621.384/131
621.384131
Collana Wiley series in microwave and optical engineering
Soggetto topico Radio - Transmitters and transmission
Microwave circuits
Microwave transmission lines
ISBN 1-283-27288-1
9786613272881
0-470-92930-8
0-470-92929-4
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto RF AND MICROWAVETRANSMITTER DESIGN; Contents; Preface; Introduction; References; 1 Passive Elements and Circuit Theory; 1.1 Immittance Two-Port Network Parameters; 1.2 Scattering Parameters; 1.3 Interconnections of Two-Port Networks; 1.4 Practical Two-Port Networks; 1.4.1 Single-Element Networks; 1.4.2 - and T -Type Networks; 1.5 Three-Port Network with Common Terminal; 1.6 Lumped Elements; 1.6.1 Inductors; 1.6.2 Capacitors; 1.7 Transmission Line; 1.8 Types of Transmission Lines; 1.8.1 Coaxial Line; 1.8.2 Stripline; 1.8.3 Microstrip Line; 1.8.4 Slotline; 1.8.5 Coplanar Waveguide; 1.9 Noise
1.9.1 Noise Sources1.9.2 Noise Figure; 1.9.3 Flicker Noise; References; 2 Active Devices and Modeling; 2.1 Diodes; 2.1.1 Operation Principle; 2.1.2 Schottky Diodes; 2.1.3 p-i-n Diodes; 2.1.4 Zener Diodes; 2.2 Varactors; 2.2.1 Varactor Modeling; 2.2.2 MOS Varactor; 2.3 MOSFETs; 2.3.1 Small-Signal Equivalent Circuit; 2.3.2 Nonlinear I-V Models; 2.3.3 Nonlinear C-V Models; 2.3.4 Charge Conservation; 2.3.5 Gate-Source Resistance; 2.3.6 Temperature Dependence; 2.3.7 Noise Model; 2.4 MESFETs and HEMTs; 2.4.1 Small-Signal Equivalent Circuit; 2.4.2 Determination of Equivalent Circuit Elements
2.4.3 Curtice Quadratic Nonlinear Model2.4.4 Parker-Skellern Nonlinear Model; 2.4.5 Chalmers (Angelov) Nonlinear Model; 2.4.6 IAF (Berroth) Nonlinear Model; 2.4.7 Noise Model; 2.5 BJTs and HBTs; 2.5.1 Small-Signal Equivalent Circuit; 2.5.2 Determination of Equivalent Circuit Elements; 2.5.3 Equivalence of Intrinsic - and T -Type Topologies; 2.5.4 Nonlinear Bipolar Device Modeling; 2.5.5 Noise Model; References; 3 Impedance Matching; 3.1 Main Principles; 3.2 Smith Chart; 3.3 Matching with Lumped Elements; 3.3.1 Analytic Design Technique; 3.3.2 Bipolar UHF Power Amplifier
3.3.3 MOSFET VHF High-Power Amplifier3.4 Matching with Transmission Lines; 3.4.1 Analytic Design Technique; 3.4.2 Equivalence Between Circuits with Lumped and Distributed Parameters; 3.4.3 Narrowband Microwave Power Amplifier; 3.4.4 Broadband UHF High-Power Amplifier; 3.5 Matching Networks with Mixed Lumped and Distributed Elements; References; 4 Power Transformers, Combiners, and Couplers; 4.1 Basic Properties; 4.1.1 Three-Port Networks; 4.1.2 Four-Port Networks; 4.2 Transmission-Line Transformers and Combiners; 4.3 Baluns; 4.4 Wilkinson Power Dividers/Combiners; 4.5 Microwave Hybrids
4.6 Coupled-Line Directional CouplersReferences; 5 Filters; 5.1 Types of Filters; 5.2 Filter Design Using Image Parameter Method; 5.2.1 Constant-k Filter Sections; 5.2.2 m-Derived Filter Sections; 5.3 Filter Design Using Insertion Loss Method; 5.3.1 Maximally Flat Low-Pass Filter; 5.3.2 Equal-Ripple Low-Pass Filter; 5.3.3 Elliptic Function Low-Pass Filter; 5.3.4 Maximally Flat Group-Delay Low-Pass Filter; 5.4 Bandpass and Bandstop Transformation; 5.5 Transmission-Line Low-Pass Filter Implementation; 5.5.1 Richards's Transformation; 5.5.2 Kuroda Identities; 5.5.3 Design Example
5.6 Coupled-Line Filters
Record Nr. UNINA-9910831062803321
Grebennikov Andrei <1956->  
Hoboken, N.J., : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
RF and microwave transmitter design / / Andrei Grebennikov
RF and microwave transmitter design / / Andrei Grebennikov
Autore Grebennikov Andrei <1956->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2011
Descrizione fisica 1 online resource (838 p.)
Disciplina 621.384/131
Collana Wiley series in microwave and optical engineering
Soggetto topico Radio - Transmitters and transmission
Microwave circuits
Microwave transmission lines
ISBN 1-283-27288-1
9786613272881
0-470-92930-8
0-470-92929-4
Classificazione TEC024000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto RF AND MICROWAVETRANSMITTER DESIGN; Contents; Preface; Introduction; References; 1 Passive Elements and Circuit Theory; 1.1 Immittance Two-Port Network Parameters; 1.2 Scattering Parameters; 1.3 Interconnections of Two-Port Networks; 1.4 Practical Two-Port Networks; 1.4.1 Single-Element Networks; 1.4.2 - and T -Type Networks; 1.5 Three-Port Network with Common Terminal; 1.6 Lumped Elements; 1.6.1 Inductors; 1.6.2 Capacitors; 1.7 Transmission Line; 1.8 Types of Transmission Lines; 1.8.1 Coaxial Line; 1.8.2 Stripline; 1.8.3 Microstrip Line; 1.8.4 Slotline; 1.8.5 Coplanar Waveguide; 1.9 Noise
1.9.1 Noise Sources1.9.2 Noise Figure; 1.9.3 Flicker Noise; References; 2 Active Devices and Modeling; 2.1 Diodes; 2.1.1 Operation Principle; 2.1.2 Schottky Diodes; 2.1.3 p-i-n Diodes; 2.1.4 Zener Diodes; 2.2 Varactors; 2.2.1 Varactor Modeling; 2.2.2 MOS Varactor; 2.3 MOSFETs; 2.3.1 Small-Signal Equivalent Circuit; 2.3.2 Nonlinear I-V Models; 2.3.3 Nonlinear C-V Models; 2.3.4 Charge Conservation; 2.3.5 Gate-Source Resistance; 2.3.6 Temperature Dependence; 2.3.7 Noise Model; 2.4 MESFETs and HEMTs; 2.4.1 Small-Signal Equivalent Circuit; 2.4.2 Determination of Equivalent Circuit Elements
2.4.3 Curtice Quadratic Nonlinear Model2.4.4 Parker-Skellern Nonlinear Model; 2.4.5 Chalmers (Angelov) Nonlinear Model; 2.4.6 IAF (Berroth) Nonlinear Model; 2.4.7 Noise Model; 2.5 BJTs and HBTs; 2.5.1 Small-Signal Equivalent Circuit; 2.5.2 Determination of Equivalent Circuit Elements; 2.5.3 Equivalence of Intrinsic - and T -Type Topologies; 2.5.4 Nonlinear Bipolar Device Modeling; 2.5.5 Noise Model; References; 3 Impedance Matching; 3.1 Main Principles; 3.2 Smith Chart; 3.3 Matching with Lumped Elements; 3.3.1 Analytic Design Technique; 3.3.2 Bipolar UHF Power Amplifier
3.3.3 MOSFET VHF High-Power Amplifier3.4 Matching with Transmission Lines; 3.4.1 Analytic Design Technique; 3.4.2 Equivalence Between Circuits with Lumped and Distributed Parameters; 3.4.3 Narrowband Microwave Power Amplifier; 3.4.4 Broadband UHF High-Power Amplifier; 3.5 Matching Networks with Mixed Lumped and Distributed Elements; References; 4 Power Transformers, Combiners, and Couplers; 4.1 Basic Properties; 4.1.1 Three-Port Networks; 4.1.2 Four-Port Networks; 4.2 Transmission-Line Transformers and Combiners; 4.3 Baluns; 4.4 Wilkinson Power Dividers/Combiners; 4.5 Microwave Hybrids
4.6 Coupled-Line Directional CouplersReferences; 5 Filters; 5.1 Types of Filters; 5.2 Filter Design Using Image Parameter Method; 5.2.1 Constant-k Filter Sections; 5.2.2 m-Derived Filter Sections; 5.3 Filter Design Using Insertion Loss Method; 5.3.1 Maximally Flat Low-Pass Filter; 5.3.2 Equal-Ripple Low-Pass Filter; 5.3.3 Elliptic Function Low-Pass Filter; 5.3.4 Maximally Flat Group-Delay Low-Pass Filter; 5.4 Bandpass and Bandstop Transformation; 5.5 Transmission-Line Low-Pass Filter Implementation; 5.5.1 Richards's Transformation; 5.5.2 Kuroda Identities; 5.5.3 Design Example
5.6 Coupled-Line Filters
Record Nr. UNINA-9910877869903321
Grebennikov Andrei <1956->  
Hoboken, N.J., : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Switchmode RF power amplifiers [[electronic resource] /] / Andrei Grebennikov and Nathan O. Sokal
Switchmode RF power amplifiers [[electronic resource] /] / Andrei Grebennikov and Nathan O. Sokal
Autore Grebennikov Andrei <1956->
Pubbl/distr/stampa Burlington, MA ; ; Amsterdam, : Elsevier/Newnes, c2007
Descrizione fisica 1 online resource (443 p.)
Disciplina 621.381535
Altri autori (Persone) SokalNathan O
Collana Communications engineering series Switchmode RF power amplifiers
Soggetto topico Power amplifiers
Microwave amplifiers
Soggetto genere / forma Electronic books.
ISBN 1-281-05762-2
9786611057626
0-08-055064-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Switchmode RF Power Amplifiers; Copyright Page; Table of Contents; About Andrei Grebennikov; About Nathan O. Sokal; Preface; Acknowledgments; Chapter 1: Power-Amplifier Design Principles; 1.1 Spectral-Domain Analysis; 1.2 Basic Classes of Operation: A, AB, B, and C; 1.4 High-Frequency Conduction Angle; 1.5 Nonlinear Effect of Collector Capacitance; 1.6 Push-Pull Power Amplifiers; References; Chapter 2: Class-D Power Amplifiers; 2.1 Switched-Mode Power Amplifiers with Resistive Load; 2.2 Complementary Voltage-Switching Configuration
2.3 Transformer-Coupled Voltage-Switching Configuration2.4 Symmetrical Current-Switching Configuration; 2.5 Transformer-Coupled Current-Switching Configuration; 2.6 Voltage-Switching Configuration with Reactive Load; Chapter 3: Class-F Power Amplifiers; 3.1 Biharmonic Operation Mode; 3.6 Load Networks with Lumped Elements; Chapter 4: Inverse Class F; 4.1 Biharmonic Operation Mode; 4.4 Load Networks with Lumped Elements; References; Chapter 5: Class E with Shunt Capacitance; 5.1 Effect of Detuned Resonant Circuit; 5.2 Load Network with Shunt Capacitor and Series Filter
5.3 Matching with Standard Load5.8 Load Network with Transmission Lines; 5.9 Practical RF and Microwave Class-E Power Amplifiers and Applications; References; Chapter 6: Class E with Finite dc-Feed Inductance; 6.1 Class E with One Capacitor and One Inductor; 6.2 Generalized Class-E Load Network with Finite dc-Feed Inductance; 6.7 Load Network with Transmission Lines; 6.9 Power Gain; Chapter 7: Class E with Quarter-wave Transmission Line; 7.1 Load Network with Parallel Quarter-wave Line; 7.2 Optimum Load Network Parameters; 7.4 Matching Circuit with Lumped Elements; References
Chapter 8: Alternative and Mixed-Mode High-Efficiency Power Amplifiers8.2 Class-E/F Power Amplifiers; 8.4 Inverse Class-E Power Amplifiers; Chapter 9: Computer-Aided Design of Switched-Mode Power Amplifiers; 9.1 HB-PLUS Program for Half-Bridge and Full-Bridge Direct-Coupled Voltage-Switching Class-D and Class-DE Circuits; 9.4 HB-PLUS CAD Examples for Class D and Class DE; 9.5 HEPA-PLUS CAD Example for Class E; 9.7 ADS Circuit Simulator and Its Applicability to Switched-Mode Class E; Index
Record Nr. UNINA-9910457351203321
Grebennikov Andrei <1956->  
Burlington, MA ; ; Amsterdam, : Elsevier/Newnes, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Switchmode RF power amplifiers [[electronic resource] /] / Andrei Grebennikov and Nathan O. Sokal
Switchmode RF power amplifiers [[electronic resource] /] / Andrei Grebennikov and Nathan O. Sokal
Autore Grebennikov Andrei <1956->
Pubbl/distr/stampa Burlington, MA ; ; Amsterdam, : Elsevier/Newnes, c2007
Descrizione fisica 1 online resource (443 p.)
Disciplina 621.381535
Altri autori (Persone) SokalNathan O
Collana Communications engineering series Switchmode RF power amplifiers
Soggetto topico Power amplifiers
Microwave amplifiers
ISBN 1-281-05762-2
9786611057626
0-08-055064-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Switchmode RF Power Amplifiers; Copyright Page; Table of Contents; About Andrei Grebennikov; About Nathan O. Sokal; Preface; Acknowledgments; Chapter 1: Power-Amplifier Design Principles; 1.1 Spectral-Domain Analysis; 1.2 Basic Classes of Operation: A, AB, B, and C; 1.4 High-Frequency Conduction Angle; 1.5 Nonlinear Effect of Collector Capacitance; 1.6 Push-Pull Power Amplifiers; References; Chapter 2: Class-D Power Amplifiers; 2.1 Switched-Mode Power Amplifiers with Resistive Load; 2.2 Complementary Voltage-Switching Configuration
2.3 Transformer-Coupled Voltage-Switching Configuration2.4 Symmetrical Current-Switching Configuration; 2.5 Transformer-Coupled Current-Switching Configuration; 2.6 Voltage-Switching Configuration with Reactive Load; Chapter 3: Class-F Power Amplifiers; 3.1 Biharmonic Operation Mode; 3.6 Load Networks with Lumped Elements; Chapter 4: Inverse Class F; 4.1 Biharmonic Operation Mode; 4.4 Load Networks with Lumped Elements; References; Chapter 5: Class E with Shunt Capacitance; 5.1 Effect of Detuned Resonant Circuit; 5.2 Load Network with Shunt Capacitor and Series Filter
5.3 Matching with Standard Load5.8 Load Network with Transmission Lines; 5.9 Practical RF and Microwave Class-E Power Amplifiers and Applications; References; Chapter 6: Class E with Finite dc-Feed Inductance; 6.1 Class E with One Capacitor and One Inductor; 6.2 Generalized Class-E Load Network with Finite dc-Feed Inductance; 6.7 Load Network with Transmission Lines; 6.9 Power Gain; Chapter 7: Class E with Quarter-wave Transmission Line; 7.1 Load Network with Parallel Quarter-wave Line; 7.2 Optimum Load Network Parameters; 7.4 Matching Circuit with Lumped Elements; References
Chapter 8: Alternative and Mixed-Mode High-Efficiency Power Amplifiers8.2 Class-E/F Power Amplifiers; 8.4 Inverse Class-E Power Amplifiers; Chapter 9: Computer-Aided Design of Switched-Mode Power Amplifiers; 9.1 HB-PLUS Program for Half-Bridge and Full-Bridge Direct-Coupled Voltage-Switching Class-D and Class-DE Circuits; 9.4 HB-PLUS CAD Examples for Class D and Class DE; 9.5 HEPA-PLUS CAD Example for Class E; 9.7 ADS Circuit Simulator and Its Applicability to Switched-Mode Class E; Index
Record Nr. UNINA-9910784355703321
Grebennikov Andrei <1956->  
Burlington, MA ; ; Amsterdam, : Elsevier/Newnes, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Switchmode RF power amplifiers / / Andrei Grebennikov and Nathan O. Sokal
Switchmode RF power amplifiers / / Andrei Grebennikov and Nathan O. Sokal
Autore Grebennikov Andrei <1956->
Edizione [1st ed.]
Pubbl/distr/stampa Burlington, MA ; ; Amsterdam, : Elsevier/Newnes, c2007
Descrizione fisica 1 online resource (443 p.)
Disciplina 621.381535
Altri autori (Persone) SokalNathan O
Collana Communications engineering series Switchmode RF power amplifiers
Soggetto topico Power amplifiers
Microwave amplifiers
ISBN 1-281-05762-2
9786611057626
0-08-055064-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Switchmode RF Power Amplifiers; Copyright Page; Table of Contents; About Andrei Grebennikov; About Nathan O. Sokal; Preface; Acknowledgments; Chapter 1: Power-Amplifier Design Principles; 1.1 Spectral-Domain Analysis; 1.2 Basic Classes of Operation: A, AB, B, and C; 1.4 High-Frequency Conduction Angle; 1.5 Nonlinear Effect of Collector Capacitance; 1.6 Push-Pull Power Amplifiers; References; Chapter 2: Class-D Power Amplifiers; 2.1 Switched-Mode Power Amplifiers with Resistive Load; 2.2 Complementary Voltage-Switching Configuration
2.3 Transformer-Coupled Voltage-Switching Configuration2.4 Symmetrical Current-Switching Configuration; 2.5 Transformer-Coupled Current-Switching Configuration; 2.6 Voltage-Switching Configuration with Reactive Load; Chapter 3: Class-F Power Amplifiers; 3.1 Biharmonic Operation Mode; 3.6 Load Networks with Lumped Elements; Chapter 4: Inverse Class F; 4.1 Biharmonic Operation Mode; 4.4 Load Networks with Lumped Elements; References; Chapter 5: Class E with Shunt Capacitance; 5.1 Effect of Detuned Resonant Circuit; 5.2 Load Network with Shunt Capacitor and Series Filter
5.3 Matching with Standard Load5.8 Load Network with Transmission Lines; 5.9 Practical RF and Microwave Class-E Power Amplifiers and Applications; References; Chapter 6: Class E with Finite dc-Feed Inductance; 6.1 Class E with One Capacitor and One Inductor; 6.2 Generalized Class-E Load Network with Finite dc-Feed Inductance; 6.7 Load Network with Transmission Lines; 6.9 Power Gain; Chapter 7: Class E with Quarter-wave Transmission Line; 7.1 Load Network with Parallel Quarter-wave Line; 7.2 Optimum Load Network Parameters; 7.4 Matching Circuit with Lumped Elements; References
Chapter 8: Alternative and Mixed-Mode High-Efficiency Power Amplifiers8.2 Class-E/F Power Amplifiers; 8.4 Inverse Class-E Power Amplifiers; Chapter 9: Computer-Aided Design of Switched-Mode Power Amplifiers; 9.1 HB-PLUS Program for Half-Bridge and Full-Bridge Direct-Coupled Voltage-Switching Class-D and Class-DE Circuits; 9.4 HB-PLUS CAD Examples for Class D and Class DE; 9.5 HEPA-PLUS CAD Example for Class E; 9.7 ADS Circuit Simulator and Its Applicability to Switched-Mode Class E; Index
Record Nr. UNINA-9910817841503321
Grebennikov Andrei <1956->  
Burlington, MA ; ; Amsterdam, : Elsevier/Newnes, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui