top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Neural Networks in Agriculture
Artificial Neural Networks in Agriculture
Autore Kujawa Sebastian
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (283 p.)
Soggetto topico Biology, life sciences
Research & information: general
Technology, engineering, agriculture
Soggetto non controllato agroecology
apparent soil electrical conductivity (ECa)
artificial neural network
artificial neural network (ANN)
artificial neural networks
automated harvesting
average degree of coverage
big data
classification
CLQ
CNN
convolutional neural networks
corn canopy cover
corn plant density
correlation filter
coverage unevenness coefficient
crop models
crop yield prediction
cropland mapping
decision supporting systems
deep learning
deoxynivalenol
dynamic model
dynamic response
dynamic time warping
EBK
EM38
environment
Faster-RCNN
ferulic acid
food production
GA-BPNN
GPP-driven spectral model
grain
Grain weevil identification
health
high-resolution imagery
high-throughput phenotyping
hybrid feature extraction
hydroponics
image classification
image identification
LSTM
machine learning
magnetic susceptibility (MS)
Medjool dates
memory
metric
MLP network
model application for sustainable agriculture
modeling
NARX neural networks
neural image analysis
neural modelling classification
neural network
neural networks
nivalenol
oil palm tree
optimization
paddy rice mapping
Phoenix dactylifera L.
plant growth
precision agriculture
predicting
recursive feature elimination wrapper
remote sensing for agriculture
rice phenology
root zone temperature
sensitivity analysis
similarity
soil and plant nutrition
soybean
time series forecasting
transfer learning
UAV
vegetation indices
weakly supervised learning
weeds
winter wheat
yield gap
yield prediction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557509803321
Kujawa Sebastian  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing of Land Surface Phenology
Remote Sensing of Land Surface Phenology
Autore Ma Xuanlong
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (276 p.)
Soggetto topico Environmental science, engineering and technology
History of engineering and technology
Technology: general issues
Soggetto non controllato arctic
autumn phenology
carbon cycle
carbon exchange
climate change
climate changes
climatic limitation
contribution
crop sowing date
data suitability
development stage
different drivers
digital camera
driving factors
enhanced vegetation index
evapotranspiration
Google Earth Engine
GPP
gross primary production
Hangzhou
high elevation
human activities
land surface phenology
land surface temperature
MODIS
Mongolian oak
n/a
NDPI
NDVI
Northeast China
phenology
photosynthesis
plant phenology
process-based model
Qilian Mountains
Qinghai-Tibetan Plateau
random forest model
remote sensing
sap flow
satellite data
seasonally dry tropical forest
snow cover
snow phenology
soil moisture
solar-induced chlorophyll fluorescence
spatial scaling effects
spatiotemporal dynamics
spatiotemporal patterns
spatiotemporal variations
structural equation model
the Loess Plateau
Three-River Headwaters region
turning point
urban heat island effect
urbanization
vegetation dynamics
vegetation indexes
vegetation phenology
water use efficiency
yield gap
yield potential
ISBN 3-0365-5326-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619465703321
Ma Xuanlong  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Site-Specific Nutrient Management
Site-Specific Nutrient Management
Autore Grzebisz Witold
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (224 p.)
Soggetto topico Biology, life sciences
Research and information: general
Technology, Engineering, Agriculture, Industrial processes
Soggetto non controllato a field
B
Beta vulgaris L.
biological index fertility
calcium
cardinal stages of WOSR growth
chlorophyll content index
climatic potential yield
contents of available phosphorus
crop production
crop yield
crude protein content
economics
farmyard manure
field
grain yield
homogenous productivity units
indices of N productivity
indigenous Nmin at spring
magnesium
maximum photochemical efficiency of photosystem II
microelements fertilization (Ti
mineral fertilizers
mineral N
Mo
N balance
N efficiency
N gap
N input
N total uptake
N uptake
NDVI
net return
nitrate nitrogen content
nitrogen indicators: in-season
nitrogen use efficiency
nitrogenase activity
normalized difference vegetation index (NDVI)
number of spikes
on-the-go sensors
organic manure
PCA
post-harvest Nmin
potassium
regional optimal nitrogen management
remote sensing-techniques
satellite remote sensing
seed density
Si
site-specific nitrogen management
site-specific nutrient management
soil
soil brightness
soil chemistry
soil constraints
soil enzymatic activity
soil fertility
soil properties, site-specific requirements
spatial
spatial variability
spectral imagery
subsoil
sugar concentration
sustainability
temporal variability
Triticum aestivum L.
vegetation indices
vertical variability of N demand and supply
weather conditions
winter oilseed rape → winter triticale cropping sequence
winter triticale
winter wheat
yield
yield gap
Zn)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566459003321
Grzebisz Witold  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui