top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Remote Sensing in Agriculture: State-of-the-Art
Remote Sensing in Agriculture: State-of-the-Art
Autore Borgogno-Mondino Enrico
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (220 p.)
Soggetto topico Environmental science, engineering and technology
History of engineering and technology
Technology: general issues
Soggetto non controllato alpha angle
anisotropy
apple orchard damage
biomass
CDL
corn
crop height
crop management
crop Monitoring
crop water stress monitoring
crop yield prediction
cross-scale
data blending
digital number (DN)
DJI Phantom 4 Multispectral (P4M)
economic loss
entropy
feature selection
field phenotyping
gap-filling
Hidden Markov Random Field
HMRF
hyperspectral imaging
insurance support
Landsat
lodging
MODIS
northern Mongolia
oasis crop type mapping
Parrot Sequoia (Sequoia)
plant disease detection
polarimetric decomposition
precision agriculture (PA)
random forest (RF)
recursive feature increment (RFI)
red-edge spectral bands and indices
reflectance
remote sensing (RS)
remote sensing indices
SAR
Sentinel-1
Sentinel-1 and 2 integration
soil moisture Karnataka India
soil moisture semi-empirical model
soybean
spatial resolution
spectral angle mapper
spring wheat
statistically homogeneous pixels (SHPs)
storm damage mapping
support vector machine
support vector regression
Synthetic Aperture Radar
synthetic aperture radar (SAR)
thermal infrared (TIR)
thermal UAV RS
UAV
UAV-based LiDAR
unmanned aerial vehicles (UAVs)
vegetation index (VI)
vegetation status monitoring
volumetric soil moisture
winter wheat
yellow rust
yield estimation
ISBN 3-0365-5484-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Remote Sensing in Agriculture
Record Nr. UNINA-9910637779903321
Borgogno-Mondino Enrico  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Sensing Technologies for Agriculture
Smart Sensing Technologies for Agriculture
Autore Adamchuk Viacheslav I
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (232 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato adaptive K-means
apparent electrical conductivity (ECa)
autonomous robot
body dimensions
boundary-line
broiler surface temperature extraction
cation exchange capacity
clay content
convolutional neural networks
crop protection
cutting point detection
deep learning
droplet characterization
elemental composition
ellipse fitting
feature recognition
FFPH
germination paper
gripper
harvesting robot
head region locating
infrared spectroscopy
ion-selective electrode (ISE)
Kalman filter
Kd-network
kinetic stereo imaging
laser-induced breakdown spectroscopy
law of minimum
LIBS
livestock
lying posture
machine vision
mapping
model predictive control
moisture measurement
multispectral imaging
non-contact measurement
on-site detection
optical micro-sensors
partial least squares (PLS)
pH
plant detection
point cloud
precision agriculture
precision farming
precision weeding
principal component analysis (PCA)
proximal soil sensing
quantile regression
quasi-3D inversion algorithm
real-time measurement
sandy infertile soil
segmentation
sensor fusion
soil
soil electrical resistivity
soil moisture
soil nitrate nitrogen (NO3−-N)
soil nutrients
soil testing
spectroscopy
standing posture
thermal image processing
Three-dimensional mapping
transfer learning
UAV
willow tree
X-ray fluorescence
yield estimation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557667303321
Adamchuk Viacheslav I  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui